

Power and productivity

for a better worldTM

AC 800M
Library Object Style Guide

System Version 6.0

AC 800M
Library Object Style Guide

System Version 6.0

NOTICE
This document contains information about one or more ABB products and may include a
description of or a reference to one or more standards that may be generally relevant to
the ABB products. The presence of any such description of a standard or reference to a
standard is not a representation that all of the ABB products referenced in this document
support all of the features of the described or referenced standard. In order to determine
the specific features supported by a particular ABB product, the reader should consult the
product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intel-
lectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license. This
product meets the requirements specified in EMC Directive 2004/108/EC and in Low Volt-
age Directive 2006/95/EC.

TRADEMARKS
All rights to copyrights, registered trademarks, and trademarks reside with their respec-
tive owners.

Copyright © 2003-2014 by ABB.
All rights reserved.

Release: August 2014
Document number: 3BSE042835-600

3BSE042835-600 5

TABLE OF CONTENTS

About This User Manual
General ..9

Document Conventions ...10

Warning, Caution, Information, and Tip Icons..10

Terminology...11

Related Documentation ...11

Section 1 - Libraries
Introduction ...13

Purpose ...13

Library Categories ...14

Standard Libraries ..14

User Defined Libraries ...15

Object Libraries..15

Library Dependencies..15

Connected Libraries ...15

Split Libraries...16

Support Libraries..16

Naming Convention...17

Section 2 - Types
Naming ..19

Object Types...19

Compound Words and Abbreviations ..21

Suffixes ...22

Name Space..24

Table of Contents

6 3BSE042835-600

Section 3 - Parameter Interface
Naming Convention .. 25

Compound Words and Abbreviations .. 25

Parameter Properties ... 26

Data Type .. 27

Attributes .. 27

Parameter for Control Modules and Diagrams .. 28

Parameter for Function Blocks .. 30

FD Port .. 30

Initial value .. 31

Description... 31

Parameters with Special Purposes... 33

Name .. 33

Description... 34

InteractionPar... 36

ParError .. 37

Connections ... 37

Parameters for Alarm Handling ... 39

Monitoring Continuous Execution... 39

Section 4 - Engineering Interface
General .. 42

Template Design.. 43

Control Module Design... 43

Graphical Layers.. 43

Grid and Coordinate System.. 46

Layers and Interaction Windows ... 47

Icons .. 48

Function Block Design.. 51

Parameter Names ... 51

Function Block Example ... 52

Diagram Design .. 57

Table of Contents

3BSE042835-600 7

3BSE042835-600 7

Data Flow Order...58

Execution order ..60

Reverse and Display value attribute on data types in diagrams61

Reverse attribute on data types in Diagram types ..61

Variable and Parameter...62

Interaction Windows in Online Mode ...63

Introduction ..63

Interaction Windows ..65

Information Windows...65

When to use Interaction Windows ...65

Window Appearance ..66

Design ...67

Interaction principles..69

Section 5 - Operator Interface
Introduction ...71

Operator Workplace Interaction ..72

Faceplates ...72

Display Elements ...74

National Language Support (NLS) ..75

Interface between Control Builder and Operator Workplace...............................75

Interaction principles..76

SIL considerations ...77

Access Level...77

Support for Confirm Operation Dialog ..78

Graphical Indication of ParError..83

The Operator Workplace Graphics...83

Section 6 - Program Code Issues
Program Code ..85

Descriptions..86

Variables and Project Constants ...87

Object Sub-Structures..88

Table of Contents

8 3BSE042835-600

Protection and Scope ... 88

Re-use of Code... 89

Control Module Types ... 91

Function Block Types .. 93

Diagram Types ... 93

Data Types ... 93

Templates .. 94

Task Considerations ... 94

Parameter Dependency on Tasks and Controllers.. 95

Calls to Asynchronous Functions .. 95

Special functions ... 96

Handling of Input and Output Values .. 96

Error Handling ... 97

Alarm and Event Handling .. 97

Program Stop Complication... 101

Power Failure Behavior.. 102

State algorithms and bumpless parameters changes .. 102

Range Check .. 103

Conditional Range Check .. 105

Overflow handling ... 107

SIL Mark Restrictions.. 107

Appendix A - Names and Abbreviations
Suggested Names .. 109

Recommended Names and Abbreviations ... 109

Standard Library Parameters.. 113

INDEX

3BSE042835-600 9

About This User Manual

General
This manual is primarily a style guide for building object types and data types in
application libraries. It describes a concept for enhancing consistency and
readability in a library.

The manual is organized in this manner:

• Section 1, Libraries describes briefly the purpose of this style guide and the two
main library categories user-defined libraries and support libraries.

• Section 2, Types teaches you the basic design of a given object type, either as a
control module type or as a Function Block type.

• Section 3, Parameter Interface discuss a common standard for naming libraries,
object types, data types, parameters etc. It also describes the different
parameter attributes.

• Section 4, Engineering Interface describes the interface towards the application
engineer. It shows the requirement on how Control Modules, Function Blocks,
and Diagram Types are designed for usage in the graphical editor environment.

• Section 5, Operator Interface refers to an operator interacting with the system
via a graphical interface in online mode. It introduces you to the concept of
InteractionPar, a parameter of a type specific structured data type which holds
components that can be interacted from a graphic interface.

• Section 6, Program Code Issues provide ideas for efficient programming. It
highlights among other things protection attributes, re-use of code for facilitate
maintenance, alarm and event handling etc.

• Appendix A, Names and Abbreviations list recommended names and
abbreviations for types and parameters.

Document Conventions About This User Manual

10 3BSE042835-600

Document Conventions
Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons

Electrical warning icon indicates the presence of a hazard which could result in
electrical shock.

Warning icon indicates the presence of a hazard which could result in personal
injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function

This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

 About This User Manual Terminology

3BSE042835-600 11

Terminology
A complete and comprehensive list of Terms is included in the IndustrialIT
Extended Automation System 800xA, Engineering Concepts instruction
(3BDS100972*). The listing included in Engineering Concepts includes terms and
definitions as they apply to the 800xA system where the usage is different from
commonly accepted industry standard definitions and definitions given in standard
dictionaries such as Webster’s Dictionary of Computer Terms.

Related Documentation
A complete list of all documents applicable to the 800xA IndustrialIT Extended
Automation System is provided in Released User Documents, 3BUA000263*. This
document lists applicable Release Notes and User Instructions. It is provided in
PDF format and is included on the Release Notes/Documentation media provided
with your system. Released User Documents are updated with each release and a
new file is provided that contains all user documents applicable for that release with
their applicable document number. Whenever a reference to a specific instruction is
made, the instruction number is included in the reference.

Related Documentation About This User Manual

12 3BSE042835-600

3BSE042835-600 13

Section 1 Libraries

Introduction
The libraries used in the control project must have a consistent appearance. The
names of libraries, object types, data types, parameters, and variables must be used
consistently. In addition to this, there must be well-defined color schemes, and a
standard methodology for user interaction on the interface.

This manual is a style guide for developing libraries, data types, Control Module
Types (CM) and Function Block types (FB) and Diagram types. The corresponding
internal code for CM and FB is created with the programming language - Structured
Text (ST). The suggestions regarding FB in Function Block Diagrams (FBD) are
also applicable to Ladder Diagrams (LD).

Purpose

The recommendations provided in this manual apply to libraries, objects and data
types, and not to hardware types.

This style guide helps in:

• Creating a compact graphic representation of object types, which facilitates
efficient use of screen area and paper.

• Using consistent and clear naming of libraries, object types, data types,
parameters, and variables, which complies with the existing standards.

• Creating object types with consistent engineering interface.

• Developing a code structure that is easy to understand.

Library Categories Section 1 Libraries

14 3BSE042835-600

Library Categories
There are two library categories:

• Standard Libraries

• User Defined Libraries

Table 1. Relationship between library categories.

Object Libraries Support Libraries

Standard Libraries
ControlStandardLib

PidCC

ControlSupportLib

AddRangeWithGain

User Defined Libraries
BUXVesselLib

Tank

BUXSupportLib

Agitator

Each of these two categories in turn contain Object Libraries and Support Libraries.

Table 1 shows the relationship between the library categories.

In Table 1, Agitator is an object which cannot be used as a stand-alone object in an
application. In order to function, it needs to be part of a ready-to-use object, in this
case, Tank. However, Agitator shall also be reused as part of other objects.
Therefore, it is more suitable to place objects like Agitator in the support library (in
this case, BUXSupportLib).

Standard Libraries

The Standard libraries are included as AC 800M system extensions for 800xA. They
contain extended functionality designed by ABB. Almost all object types in the
standard libraries are protected. This means that these types cannot be modified and
cannot be copied to another library.

Section 1 Libraries User Defined Libraries

3BSE042835-600 15

User Defined Libraries

User defined libraries should be used for customer or solution specific objects. For
these libraries, it is recommended to include a prefix, which designates the origin of
the library.

For example, the name for the Business Unit X's library can be BUXVesselLib.

Object Libraries

Object libraries contain templates or ready to use objects such as data types,
function block types, control module types, and diagram types that can be used in
applications created in the Control Builder.

Library Dependencies
The separation of common functions into a separate library makes code reuse
possible. The complete functions, algorithms, and user interface objects can be
placed in these common libraries.

Connected Libraries

If a library uses types from other libraries, these must be included in the list of
Connected Libraries. This creates a dependency chain between the libraries. Several
dependency levels can be obtained (for example, for licensing), if the libraries are
connected.

A general rule for connecting libraries is that a library shall only depend on relevant
libraries. It is also important to avoid circular dependencies.

The reuse of graphical elements in the IndustrialIT 800xA System Graphics does
not require the creation of connected libraries.

Split Libraries Section 1 Libraries

16 3BSE042835-600

Split Libraries

In many cases, dividing a library into several libraries has advantages.
Split libraries can be defined as:

• A specific set of libraries where some libraries are common to all applications,
and they are complemented by more specialized libraries.

• A specific set of libraries with similar function, but using different external
software or hardware. For example, the objects for communication are
separated into several libraries according to the protocols used.

Split libraries belong to a family of the particular functionality. The structure of a
split library can be flat or tree-like. A tree structure is created using dependencies
within this family, and it is recommended that this tree structure is reflected in the
naming of the libraries.

For example, consider the control libraries in which the total functionality is split
into several libraries. They all have the control functionality in common, but are
divided into categories like ControlStandardLib, ControlAdvancedLib, and so on.

Support Libraries

Libraries specially designated for code re-use are called Support Libraries. The
content of a Support Library may be hidden, except for the System Graphics, which
appears in the Object Type Structure in the Plant Explorer.

The Support Libraries are used by other libraries, in general or within its
functionality family, and they are not directly connected to an application.

Section 1 Libraries Naming Convention

3BSE042835-600 17

Naming Convention
The name of a library shall describe its purpose.

The name of a library shall consist of a mix of uppercase and lowercase letters
forming the structure "LibNameLib". That is, the different parts of the name shall be
separated with uppercase letters and the name string shall always end with "Lib".
The maximum string length is 32 characters.

Some names are reserved. Examples of names used by the standard libraries are
BasicLib and IconLib.

All libraries share the same name space. Therefore, it is strongly recommended that
the user-defined libraries shall have a prefix in their library name. It is also
important to avoid too general names.

A split library's name starts with the function family (for example “Control”), then
the sub-category (for example “Advanced”), and ends with the suffix “Lib”.

For the support libraries, the naming convention is that the word “Support” should
be included between the main part of the name and the Lib suffix. For example, for
the user-defined library BUX, the support library could be named BUXSupportLib.

Table 2 provides a brief summary of the naming rules.

Table 2. Naming rules for libraries

Library Category Naming Rule

General The different parts of the name shall be separated
with upper-case letters and the name string shall
always end with "Lib". The maximum string length
must not exceed 32 characters.

User-defined Libraries The name string shall have a prefix (for example, the
company name or an abbreviation of it).

Support Libraries The word "Support" shall be included between the
main part of the name and the Lib suffix.

Split Libraries A split library's name starts with the function family
(for example, "Control"), then the sub-category (for
example,"Advanced"), and ends with the Lib suffix.

Naming Convention Section 1 Libraries

18 3BSE042835-600

3BSE042835-600 19

Section 2 Types

The choice of object type depends on the functionality that surrounds the object
(that is, the overall plant design). For more information, refer to the Basic Control
Software, Introduction and Configuration manual and also the Application
Programming, Introduction and Design manual.

Naming

Object Types

Object types and parameters shall comply with relevant standards and form a
consistent name space.

• The standard IEC 61131-3 shall be followed1.

• The standard IEC 61131-5 shall be followed whenever possible2.

As for library names, the object type name should start with an uppercase letter and
different parts of the name should be separated by capital letters (for example,
PidCascadeLoop and FFToCC).

1. IEC 61131 Programming Languages.
2. IEC 61131 Messaging service specification (Communication).

Object Types Section 2 Types

20 3BSE042835-600

The length of object type names shall not exceed twelve characters, when this is not
possible up to 20 characters are allowed. However, the use of short names is not as
critical for control module types as for Function Blocks types. The following
reasons are:

• Object type names and parameter names are not always shown in the CMD
(Control Module Diagram) editor.

• The requirement that graphical representation of a Function Block Diagram
shall be as clear and easy as possible to understand calls for short, descriptive
and easily understandable names.

Still, when zooming in on the control module diagram, or when showing the
parameter list for a control module type, the parameter names are shown, and they
should therefore not be unnecessarily long.

The names of public and non-hidden function block types, control module types,
and diagram types should clearly describe the actual function of the object type and
not be too short and general. For example, Add4Int, not just Add. They may also
have a common prefix that designates a group of object types, for example
MMSRead, MMSWrite.

Names of control module types shall end with the suffix M if a function block type
with identical functionality exists. Names of diagram types shall end with the suffix
D if a function block type and/or if control module types with identical functionality
exists.

Object types intended to be templates; - types that the user has to make a new
definition of and rename before actual usage - shall always have the suffix Template
in the object type name. For example, the object type name
EquipProcedureTemplate.

Aspect objects shall be categorized in such a way that, example, all motors will
contain the string Motor, all valves will contain the string Valve, a PID controller
will contain the string PID, and so on.

Section 2 Types Compound Words and Abbreviations

3BSE042835-600 21

Compound Words and Abbreviations

The following usage order is recommended:

1. Use the full name

2. Use the short name

If it is a compound word, try to use the following rules in the following order:

1. A. Word full name B. Word full name

2. A. Word full name B. Word short name

3. A. Word short name B. Word short name

Rule Example

Use only a part of a whole word. Acceleration Limiter ->
AccelerationLimCC

Remove all vowels (and some consonants). Square root -> SqrtCC

Use a new word. Communication Link Read ->
COMLIRead

Suffixes Section 2 Types

22 3BSE042835-600

There are no strict rules on how to build a short name, but the following methods
should be considered:

If there is no risk for misunderstanding, different full names can have the same
abbreviation. In Appendix A, Names and Abbreviations a list of names and their
abbreviations are presented.

The IEC 61131-3 and IEC 61131-5 (the latter only for communication, excluding
FOUNDATION Fieldbus) standards and guidelines shall be followed for naming of
object types. This is also valid for libraries, parameters, as well as data types.

Note that some words, for example IF, THEN, ELSE (not case sensitive), are
keywords recognized by the 61131-3 standard and cannot be used.

Suffixes

A group of object types may also have a common suffix describing the data type
they should be applied to, for example Add4Int and Mult4Int. Most object types in
the control libraries have the suffix -CC, which indicates that they should be applied
to the data type Control Connection.

Section 2 Types Suffixes

3BSE042835-600 23

The following suffixes shall be recognized:

Other Naming Issues:
• Several suffixes are allowed but do not use _ (underscore) to separate

abbreviations (occupies one position and may be visually unclear).
• Acronyms should be in capital letters, FBD (Function Block Diagram).

Table 3. Object Name Suffixes

Short Name Remark

Real, Bool, Dint, CC Used as suffix on function blocks that have same or similar
function, but the data type of the main signal parameter
differs. It can also be used to group objects using a main
signal of a certain data type. For example: PidSimpleReal,
PidSimpleCC, SignalInBool, and SignalInReal.

M A control module type that has the same functionality as an
existing function block type shall have the same name as
that function block type plus the suffix “M”.

For example:

AlarmCond (Function block type)

AlarmCondM (Control module type)

D A diagram type that has the same functionality as an
existing function block type or control module type shall have
the same name as that function block type or control module
plus the suffix "D" (for Diagram type). For Example:
RemoteInput Control module type and RemoteInputD
Diagram type

Core Protected core functionality, typically re-used in several
different object types. Functionality that may be subject to
changes should be placed outside the core.

For examples: EquipProcedureCore, UniCore

Template Only for object types that the user must change and rename
before use. For example: EquipProcedureTemplate

Name Space Section 2 Types

24 3BSE042835-600

Name Space

The object type name should be unique, not only within a library, but among all
libraries. Object types with the same name but belonging to different libraries can be
accessed via dot notation, for example MyLib1.MyFunctionBlock and
MyLib2.MyFunctionBlock. It is however strongly advised to have unique names, to
minimize the risk of calling the wrong object type.

3BSE042835-600 25

Section 3 Parameter Interface

The parameters of Control Modules and Function Blocks should follow the naming
and usage convention described in this section. It will be easier for the application
programmer to understand the purpose of the different parameters found in each
object’s connection list.

Naming Convention
It is important to have a standard for naming libraries, object types, data types,
parameters, etc. For example, a control module type or a parameter with a standard
name should always represent a specific function. This means that a user can
connect the right variables and use the correct control module without knowing the
exact function of their respective types.

When designing an object type, an excessive length of the name of one or a few
parameters should not be allowed if it increases the total width of the object type
graphical symbol considerably. This will be discussed more thoroughly in Section 4,
Engineering Interface. In exceptional cases, longer names than specified below are
allowed. In general, whenever a rule cannot be applied strictly, common sense
should be used.

If names contain a part that is an abbreviation, for example MMS, these
abbreviations should be written in capital letters.

Compound Words and Abbreviations

The following usage order is recommended:

1. Use the full name

2. Use the short name

Rule Example

Use only a part of a whole word. Request -> Req

Remove all vowels (and some consonants). Print -> Prt

Use a new word. Communication Link -> COMLI

Parameter Properties Section 3 Parameter Interface

26 3BSE042835-600

If it is a compound word, try to use the following rules which was described in
Compound Words and Abbreviations on page 21.

Names can consist of only one name, for example Enable, but also be composed by
several words, InteractionPar. In the latter case it is often necessary to abbreviate
one or several of the words into a short form. There are no strict rules on how to
build a short name, but the following methods should be considered:

Parameter Properties
The parameters of function blocks, control modules, and diagrams have certain
properties that should be set. The usage of these will be described in this sub
section.

Figure 1. Parameter view in editor - Function Blocks

Figure 2. Parameter view in editor - Control Modules and Diagrams

Section 3 Parameter Interface Data Type

3BSE042835-600 27

Recommendations for the following properties will be presented:

• Name on page 33

• Data Type on page 27

• Attributes on page 27

• Parameter for Control Modules and Diagrams on page 28

• Parameter for Function Blocks on page 30

• FD Port on page 30

• Initial value on page 31

• Description on page 34

Data Type

It is recommended to avoid structured data types in Function Block Types, since it is
not possible to connect the components of a structured data type directly to other
function blocks.

If a component of a structured parameter is connected to another Function Block in
FBDs, this must be made via a local variable. However, this kind of connections
between two function blocks will not appear graphically, even though they are in
fact connected.

When using the Diagram editor, a structured parameter component may be
connected to an object, using that component data type by directly addressing it as
struct.component. For example, a variable of type real can be connected to the
value component of an object parameter of type RealIO.

Attributes

Control modules and diagrams do not have attributes on their parameters, (only on
variables) since no local copy of the connected variable is made.

For function blocks the entries of the attribute column can be group into three
categories:

• retain or cold retain

• nosort

Parameter for Control Modules and Diagrams Section 3 Parameter Interface

28 3BSE042835-600

• hidden

• by_ref

• constant

• Reverse attribute on data types in diagrams

• Display value attribute on data types in diagrams

Retain shall be used for In and Out parameters in Function Block Types. Whereas
ColdRetain is the normal attribute for operator-settings parameters, such as
operating time measurements, and parameters for operator interaction. Note that the
(cold)retain handling does not support extensible parameters. When declaring a data
type, it should be designed such that it is unaffected if the connected variable of an
instance is declared coldretain/retain by the user.

The nosort attribute can be assigned to a parameter, but this is rarely used.

Parameters that should not be available via the OPC-server, must be given the
attribute hidden.

The by_ref attribute can only be set for function block parameters with direction In
or Out. This attribute specifies that the parameter value will be passed by reference
instead of the value.

The attribute Constant can be used only for variables.

The reverse attribute works for control modules in diagrams. Split and Join
functions cannot to be used with structured data types containing components with
the reverse attribute. Functions and function blocks cannot handle reverse attributes.
For diagrams there is also a attribute Displayvalue for datatype. If this attribute is set
for a component in a datatype, the value will be shown in online mode for the
connection.

Parameter for Control Modules and Diagrams

In control module and diagram types, a parameter can have the direction In, Out,
In_Out or Unspecified. All of them are passed by reference, which means only a
reference to the actual variable outside the control module is passed to and from the
control module.

Section 3 Parameter Interface Parameter for Control Modules and Diagrams

3BSE042835-600 29

The differences between the four types include the different access rules from the
code inside the control module and the limitations for connecting the parameters:

• In parameters can only be read, where as Out, In_Out and Unspecified
parameters can be both read and written.

• The In parameter of a sub control module can be connected to either the
In parameter or the Out parameter in the surrounding control module.
Between control modules on the same level, it is only allowed to connect In to
Out. Several In parameters can be connected to one Out (if it is not a structured
type containing a reverse attribute). In_Out must be connected to a variable (on
any level).
These rules also apply to connecting parameters to communication variables.
The in communication variable should be connected to In parameters and the
out communication variable should be connected to Out parameters only.

• Unspecified parameters can be used without limitations when connected to
other parameters with unspecified direction for compatibility reasons. However
unspecified parameters cannot be connected to parameters with direction and
vice versa. The unspecified parameters are not applicable for diagram type
instances.

The direction Unspecified must not be used for parameters in a new control
module type in library or a sub level control module.

The direction should be noted as a keyword in the description for each parameter.
See also Type Description Keyword on page 32.

Parameter for Function Blocks Section 3 Parameter Interface

30 3BSE042835-600

Parameter for Function Blocks

In function block types, a parameter can have the direction In, Out or In_Out. Use
the direction In or Out whenever possible. Parameters of direction In_Out must be
connected for function blocks.

The In_Out direction should be used only when specifically motivated (for example
forcing). Ample use of In_Out may produce confusing FBDs. Note that such a
parameter will be marked written for a Function Block, even for the components
that are only read. This may result in code loops during compilation for structured
data types, which can be avoided by setting the variable's attribute to nosort. If the
data type AnyType is used, the direction must be In_Out.

FD Port

The FD Port column is valid for parameters in function block types, control module
types, and diagram types. It is only significant for the types that are instantiated in a
Diagram editor.

The normal choice is Yes or No. The value specifies if the parameter shall be visible
when the function block type, control module type or diagram type is instantiated in
an FD code block. The configured value represents the default, which can be
changed on the instances.

Parameters with direction in are placed on the left side, and parameters with
direction out are placed on the right side. Parameters with direction In_out can be
placed on the left side, if the keyword left is added; else it is placed on both sides.
Similarly, parameters with direction unspecified can be placed on the left, right, or
on both sides. The left or right specification cannot be changed on the instance.

Parameters of bi-directional data types with no reverse defined components must be
either an Unspecified parameter (control module types only) or an In_Out
parameter.

The following list summarizes the use of the values in the FD Port column for
control module parameters with direction Unspecified and function block
parameters with direction In_Out:

• No - Not visible as a port.

• No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

Section 3 Parameter Interface Initial value

3BSE042835-600 31

• No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on.

• Yes - Visible as a port on the left side of the object.

• Yes Left - Visible as a port on the left side of the object.

• Yes Right - Visible as a port on the right side of the object.

Initial value

The initial value column for a parameter can be: empty, a value, or the value default.
The value default is only applicable to Control Modules and Diagrams.

Parameters with type description IN or IN(OUT) can have all three alternatives;
empty, a value, or the value default. For parameters with type description OUT and
OUT(IN) either the empty field alternative, or the value default, is used. An empty
initial value of a parameter of direction In_Out forces the application engineer to
connect a variable to it, and the parameter then receives this parameter's initial
value. Parameters marked default receives the initial value of its type.

For simple data type, it is advisable to use default only for out parameters. For
structured data types it may be used both for in and out. For in parameters of simple
data types it is advisable to instead use the intended default value example, false for
a bool parameter.

The initial value of an instance can be set using the Control Properties aspect in the
Control Structure of the Plant Explorer Workplace. This is, for example, useful for
InteractionPar.

Description

Parameters in object types should have a line of text briefly describing its
purpose/function. If a short name has been used for the parameter, use the
description field to explain it with full names. For example, the description field for
the parameter PrtAckAlarms may look like “Prints acknowledged alarms”. A real or
integer input parameter may have a range. When the parameter value is out-of-range
the parameter shall be assigned a specific value or the last good value.

Description Section 3 Parameter Interface

32 3BSE042835-600

Type Description Keyword

The description field can hold a keyword before the actual description. This
keyword holds information about its usage for the application engineer. All
parameters in Control Module types, Diagram types, and IN_OUT parameters
should have at least one of the first four comments in Table 4.

For Function Block Types parameters only the comments related to EDIT and
NONSIL are applicable.

For control modules, it is very important that the IN and OUT markings of
parameters are correct. The application programmer needs this information to avoid
program loops and to know which parameters to write to and read from,
respectively.

The parameters are shown as IN, OUT, or INOUT ports in Function Designer
dependent of the first characters in the parameter description:

Table 4. Type Description Keywords

Keyword Description

IN The parameter is only read.

OUT The parameter is only written.

IN(OUT) The parameter is both read and written, but mostly read.

OUT(IN) The parameter is both read and written, but mostly written.

NODE Used when the parameter has a graphical connection node (control
modules only).

EDIT The value of the parameter is used the first execution after transition
from Edit to Run mode without initialization. Cannot be changed online.

NONSIL The output parameter marked with NONSIL originates from a restricted
marked sub-object and is not allowed to be used in the critical loop. If
the object is set to SIL1-2 or SIL3, but the parameters are Non-SIL,
then it is possible to obtain partial functionality in the SIL environment.

DEFAULT The output parameters on SIL marked object where the information
originates from restricted sub objects.

Changing the first characters containing keywords of the parameter description
should be considered an incompatible change. If the port direction is changed,
e.g. from INOUT to IN, then the parameter must be reconnected in the function
designer applications after the changed instances are downloaded.

Section 3 Parameter Interface Parameters with Special Purposes

3BSE042835-600 33

Parameter description starts with “IN” --> IN port

Parameter description starts with “OUT” --> OUT port

Parameter description starts with any other string --> INOUT port

Range Checking Description

Table 5. Example of description for range checking in a Function Block Type

Name Data type Attributes Direction
Initial
value

Description

AEConfig dint retain IN 1 Config (0=None, 1=Alarm,
2=Event, 3=Event1,
4=Indication, Else Alarm +
ParErr)

A real, integer, or word input parameter may have a range. In that case the parameter
description shall also state the range, the action for valid input values, and the action
for out-of-range values (see description field in Table 5). This is mandatory for
objects that are to be SIL classified.

Parameters with Special Purposes
This sub section describes the most frequent parameters and their usage.

Name

The Name parameter is a string of 30 characters, holding the instance name. The
Name parameter is used for several purposes:

• When performing a Name Upload in the Control Structure (Plant Explorer), the
instances' Name parameter is passed to the corresponding Name aspects.

Description Section 3 Parameter Interface

34 3BSE042835-600

• If the object is an alarm owner, its Name should be used as source name when
alarms are generated, and must therefore be unique. The Name parameter will
then appear in the alarm list as the Source Name of an alarm. In such cases the
Name parameter of the type should not have any initial value to force the
application engineer to enter a name.

• If an interaction window is opened while the Control Builder is in on-line
mode, the Name parameter is displayed in the window title bar. See Figure 3.

• Control module types having graphical connections and a Name parameter,
should have the name visible in layer 1 together with the node names, Figure 5
in Point-to-Point Connection using ControlConnection Data Type on page 38.

Description

The Description parameter is a string of 40 characters, and is a short description of
the object instance.

• When performing a Name Upload in the Control Structure of the Plant
Explorer Workplace, the instance's Description parameter is passed to the
Name aspect's description field.

• If the object generates alarms the Name aspect's description, which is the
instance's Description parameter after a Name Upload, will appear as the
Object Description in the alarm list.

• The Description parameter is displayed in some operator graphics windows for
clarifying purposes.

Section 3 Parameter Interface Description

3BSE042835-600 35

The example object in Figure 3, is part of a standard PID controller with the Name
parameter displayed in the Windows title bar and the Description parameter
displayed in the control builder faceplate.

Figure 3. Example of usage and location of the Name and the Description
parameter.

InteractionPar Section 3 Parameter Interface

36 3BSE042835-600

InteractionPar

Table 6. Structured components

Parameter name Type Component name Type

InteractionPar MyObjectPar InputDevice AnalogInputPar

....

OutputDevice AnalogOutputPar

The InteractionPar parameter is a structured data type where the components are all
the parameters that can be changed via interaction objects. Note that it is only values
that are written to/from the interaction objects that should be placed in this
parameter. By putting these items in a parameter it is still possible to access them
from application code. If it is judged that accessing the parameter from code is
equally or more probable than from the interaction object, there should be both a
component in InteractionPar and an additional parameter. However, this will require
logic inside the type in order to handle the priority between the InteractionPar
component and the parameter.

The interaction parameter data type shall be named by concatenating the object type
name, where the parameter is used, with the word Par, ObjectNamePar. The
components for configuration typically have the attribute ColdRetain and mode,
state components have Retain attribute, whereas components for operator
commands shall not have retaining attribute.

When creating a new object containing several sub-objects, which have their own
InteractionPar, the new object's InteractionPar should have structured components.
These components should be named according to the sub-objects functional purpose
in the new object, to make its usage intuitive for an application engineer. Consider
the case of a Control Module having one analog input and one analog output
module, with some treatment in between. The compound object's InteractionPar
could then look like Table 6.

Section 3 Parameter Interface ParError

3BSE042835-600 37

ParError

The ParError parameter is set true if any input parameter is out of range. This type
of check is mandatory for SIL classified object. For non-SIL objects or SIL marked
objects running in a non-SIL environment, the EnableParError parameter may be
used. A real or integer input parameter may have a range. This means that it may be
required to have a relation (for example, > or <) to one or several constants or other
parameters.

The parameter description shall state the range, the action for valid input values, and
the action for out-of-range values.

For SIL applications, the ParError is intended to be connected to Errorhandler(M).

Exception: A ParError parameter (or other parameters) shall not be added to types
where the parameter interface is defined by IEC 61131-3, for example TOn.

Connections

A special sort of data types are the ones representing connections. These are used to
connect control modules, function blocks, and diagrams. A connection carries
information in more than one direction, why the structured data types are used. The
naming convention for the data type is that they have the suffix Connection.

Main Signal Flow

The main signal flow of an object should have a name stating its purpose, like

• In, In1, In2, … - main input signals, if there are no other natural names.

• Out, Out1, … - main output signals, if there are no other natural names.

• Pv - process value signal, used for example for process feedback in control
loops.

• Sp - set point signal, used in for example controllers.

This type of parameters do not need to reflect the data type used. The direction in is
used for input signals and out for output signals. This kind of connections have the
attribute reverse for the values that are sent backwards.

Connections Section 3 Parameter Interface

38 3BSE042835-600

Point-to-Point Connection using ControlConnection Data Type

In OutA In OutB

Forward

Backward

Direction

A natural way to represent the main signal flow of Control Modules is by structured
connections. In this way a single connection, which preferably is done graphically,
handles the main signal flow between two adjacent objects.

Bidirectional connections should have components for each direction. The
substructures are preferably named Forward and Backward, but other names may be
used if they better fit the context they are used in, for example Previous and Next,
Upstream and Downstream, etc. This makes it easier for the programmer to handle
communication between objects. It also supports data communication over task and
system borders, since it is clear what components are sent in each direction.

Figure 4. Point-to-point connection between two objects. The node names reflect the
main direction of the signal. The blow-up shows in principle data flow.

In each of the directional substructures, for example Forward and Backward, a
component Connected should exist. All objects shall set the Connected component
true in the direction-component they are allowed writing to. The Connected
component can then be checked by the object on the other side and determine if
there is a connected object or not. This is useful when an object connection is
optional, thus may not be connected.

Point-to-Point Connection Using Reverse Attribute

In bi-directional data types, the components used to transfer data in backward
direction must have the reverse attribute. Otherwise the data type cannot be used for
parameters with direction defined.

The reverse components must be grouped in consecutive order at the end of the
data type. They can also be put in a sub structure at the end of the data type.

Section 3 Parameter Interface Parameters for Alarm Handling

3BSE042835-600 39

The reverse attribute can be used for components in the data types used in
communication variables for point-to-point communication. If there is any reverse
component in a communication variable, it is communicated from out backwards to
in (opposite direction to the normal data flow). This also implies that it is only
allowed to communicate one-to-one (an out communication variable can be
connected to only one in communication variable if the data type with the reverse
component is used).

Handling Communication Failure using ISP Value

The data type editor contains the column to define an ISP value to each component.
These ISP values will be used in case of communication failure.

The rest of the components, which do not have any ISP values, will keep the
existing value.

For safe communication using IAC in a SIL application ISP value must be defined
for all components in a data type and for safe MMS it is on the user responsibility to
arrange for safe values if the communication is broken.

Parameters for Alarm Handling

The alarm handling in object should be unified with possibility to assign class,
severity, condition name, alarm and event configuration, as well as possibility to
inhibit and disable alarms. Therefore, a number of parameters defined in Table 13
on page 98, have been reserved for this purpose.

Monitoring Continuous Execution

The parameters used for control of continuous functionality (for example, level
monitoring) are described in Table 7. All of these parameters need not be defined at
all times. If Error or Warning is defined, Status must also exist. If Error and
Warning occur simultaneously, the error status code shall be given in Status.

For function block types, Error and Warning only last for one invocation. For
control module types, Error and Warning are active for as long as the invocation
lasts.

Add a suffix (for example, EnableReport, ErrorReport) in case of several activation
signals.

Table 7. Parameters for continuous functionality in FB and CM

Parameter Name Type Direction Comment

Enable bool In Activates/deactivates continuous functionality.

Valid bool Out Indicates that there is no error status and that
the function is active. Warning status does not
affect Valid.

Enabled bool Out Indicates that the function is activated. This is
not affected by error status or warning status.

Error bool Out Indicates error (Status <0).

Warning bool Out Indicates warning (Status >1).

Status dint Out Indicates Status code.

Monitoring Continuous Execution Section 3 Parameter Interface

40 3BSE042835-600

3BSE042835-600 41

Section 4 Engineering Interface

The engineering interface is the front-end towards the application engineer. In a
library there are Control Module (CM), Function Block (FB) and Diagram (D) types
that are ready to use, but also types which are intended to be modified before usage,
so called templates.

The programming method for building an application is either text based or
graphical. There are currently two graphical interfaces available for editing in
Control Builder:

• The Diagram (D) editor

• The Control Module Diagram (CMD) editor.

The text based editor is called the POU editor or just editor. The POU editor is used
to create code blocks inside the program, inside the control modules or inside the
diagrams. This editor supports different programming languages:

Language name Description

ST Structured text. This language is pure text based.

IL Instruction list. This language is pure text based.

FBD Function block diagram that in fact is a kind of
graphical editor for the FBD language.

LD Ladder diagrams. This language has also a
graphical visualization of the code.

General Section 4 Engineering Interface

42 3BSE042835-600

The subjects on how Control Modules and Function Blocks are designed for usage
in the graphical editor environments will be handled in this chapter.

The diagram editor is also able to visualize diagrams created in the functional
designer environment but the code cannot be modified in the diagram editor.

General

Protection Attribute on Types

Function Block types, Control Module types, and Diagram types can be divided into
three different categories:

• Function block types/control module types meant to be templates (have suffix
“template”, must be changed by the user to function). These kinds are not
possible to execute without any changes; Protection attribute has to be set to
False.

• Function block types/control module types that could be changed by the user,
these kinds are possible to execute without any changes; Protection attribute
has to be set to False.

• Function block types/control module types that never should be changed or
modified by the user must prevent copying of code; Protection attribute has to
be set to True.

SFC Sequential Flow Chart. In steps and transitions is
ST used.

FD code block This is used in the single graphical code block
that only exist in the first tab of a diagram. Other
code blocks in the diagram may be of any
language.

Language name Description

Section 4 Engineering Interface Template Design

3BSE042835-600 43

Template Design
Templates can be divided into two categories; types that can be edited and types that
must be edited. To enable code editing in a template the application engineer must
first make a copy of the type.

Templates enable the application engineer to customize a common solution. For
example a motor may have slightly different properties depending on usage and/or
model. By first copying a template the overall functionality is obtained and solution
specific alteration can be made, and still preserving a common operator interface
recognized by the user.

Control Module Design
Programming with control modules is preferably done graphically in the Control
Module Diagram (CMD) editor. The graphical connections between the modules
give a good overview of the signal flow in the application.

This subsection will handle Control Module design requirements for usage in the
Control Module Diagram editor. The graphic layers, the grid, and the coordinate
system all affect how a control module behaves, appears, and is positioned on the
screen, and therefore the major issues of concern. It is not always possible to build a
control module type exactly according to these guidelines.

Graphical Layers

A control module type with basic functionality should typically be square-shaped,
have two layers, and be zoomable. In normal cases layer 1 of a control module will
be visible in the CMD editor. If the module is zoomed in, layer 2 will be visible
instead of layer 1, at a certain zoom level. If the module is zoomed out, then layer 1
will become visible again. This shift point is normally 0.95, where 1.0 means the
zoom level where the module fills the whole screen, or more exactly, one side of the
module is equally long as the shortest side of the screen.

If the user wants to include other sub control module types, they should be placed in
layer 2.

When you copy a SIL marked object template, it will be Non-SIL after pasting or
during the copying process. The SIL level has to be set by the user manually on
the new object type, if required.

Graphical Layers Section 4 Engineering Interface

44 3BSE042835-600

Icons shall be put in layer 1, and the instance name of the icon type should be Icon.
When the “surrounding” control module type lacks graphical connections, the icon
should not be zoomable. This means the icon inherits the zooming properties of
layer 1, that is, it disappears at a zoom level of 0.95 (which means that the type
covers more than 95% of the whole screen).

If graphical connections exist in the surrounding type, the icon instance should be
zoomable and MaxSize of the icon instance set to 0.85. If such a type is zoomed in
on, the icon is visible until the zoom level 0.85 is reached. Between zoom level 0.85
and 0.95, the graphical connections and the node names are visible. If the type is
zoomed in on even more, layer 2 becomes visible.

If the control module type contains an interaction window in layer 2, there should be
a non-visible toggle window interaction object in layer 1. The interaction object
should be somewhat smaller than the control module type itself.

If the control module type has graphical connections and a Name parameter, the
name should be in layer 1 to be visible together with the node names.

Section 4 Engineering Interface Graphical Layers

3BSE042835-600 45

Figure 5. Recommended visibility of layers and icon at different zoom levels.

Grid and Coordinate System Section 4 Engineering Interface

46 3BSE042835-600

Grid and Coordinate System

A basic control module type should typically have four connection nodes and an
internal coordinate system extending from (-1,-1) to (1,1). When working with the
graphics inside control module type, it is advisable to check Show Grid. The default
grid size of 0.02 should normally be used, but other sizes may be used as well.

Do not reshape instances of sub control module types because it will then have
another shape in an operator window than in the main window. Use the Reset Shape
command to ensure that all sub control module instances have their original shape.

Reshaping Issues

Normally, a control module type should not be subject to reshaping. In this case,
make the module square-shaped and place the origin in the center. Place the corners
at integer coordinate points in the internal coordinate system - also when a square
shape is not possible - and use the module all the way out to its limits.

Note that it is possible to put graphical nodes on the clipping border. It is then easy
to combine it graphically with other modules. The reason is that all of its four
corners always will appear on grid points in the external grid. This method is valid
for control module subject to reshaping as well, with the exception that the origin
should be placed in the lower left corner instead. In icons, the lower left corner
should be placed at the origin and the upper right corner at (1,1).

Graphical Connection Nodes

If a control module type has graphical nodes, it is desirable to let its instances
appear on external grid points. Then, it will be easier to obtain good looking
connection schemes.

The origin of the type (in the internal coordinate system) will in the instance always
appear on a grid point of the external coordinate system at creation. Therefore,
nodes that are put on the clipping border where the origin axes cross will always
appear on the grid in the external coordinate system.

Nodes will appear on grid in the external coordinate system if the nodes are at the
origin axes in the internal coordinate system.

If four nodes are not enough, it is advisable to use the corners. All the corners
should be at integer coordinate points.

Section 4 Engineering Interface Layers and Interaction Windows

3BSE042835-600 47

Layers and Interaction Windows

Control modules in layer 2

When a control module contains other modules, so called sub modules, it is
recommended that they are placed in layer 2. Zooming in on the module will reveal
the sub-modules, which gives a good overview and also fast access to the modules.

There are mainly three categories of sub-modules which are placed in layer two:

1. Interaction windows - used for operator interaction with the object. In this way
the user gets fast access and overview of the windows belonging to the object.

2. Internal code structure - some internal control modules may be related to the
connections of a module. By placing the control module close to its
corresponding connection the user/developer gets a fast access to the correct
module.

3. Applications - used for structuring application and/or reuse of application
solutions. This gives a good overview of any applications residing inside the
object, for example a control loop or a section of a process.

It is recommended that control modules representing interaction windows are
visible in layer 2 of a control module. To make them visible, either create them in
the CMD or set the property Visibility in Graphics to Visible on the object in the
project explorer structure.

Figure 6. Visible dialog

Icons Section 4 Engineering Interface

48 3BSE042835-600

A control module type that represents the interaction window should contain a
rectangle with the following properties:

• Line color: -3 (Foreground color)

• Area color: -1 (Transparent)

This means that the area in the window will have window background color. It also
means that the window border is visible in layer 2 of the control module.

Interaction object in layer 1

A non-visible interaction object should be somewhat smaller than the icon
representing it. The reason is that the frame that indicates interaction should be
clearly visible.

Texts

Text boxes should be used instead of vertical text lines to display variables.
Otherwise the text may overwrite other graphical objects. The text box should be
made wide enough for the text size to be determined by the height of the text box. It
is then easier to combine it with text in other text boxes.

Texts that are too long will cause font reduction for text boxes. For text lines the font
will remain constant, which means that the text will not fit in the operator window,
which is worse than font reduction. Therefore text boxes should be used instead of
text lines for presentation of variables in operator windows.

Even though it is possible for an operator to zoom the module, the operator must be
able to control it without using zoom. The zoom facility is only intended for
programmers and service personnel.

Icons

Icons are used to distinguish objects, for example control modules and interaction
buttons, and to indicate their functionality.

For display elements icons and display element reduced icons, which are used when
building graphics displays for operators.

Section 4 Engineering Interface Icons

3BSE042835-600 49

Icons in Control Software for AC 800M

Control Software for AC 800M recognizes two kinds of icons: the basic icons of
IconLib and the control module type icons. The basic icons are typically used for
building up the latter, which may contain dynamics. For example, if the control
module type is inhibited, a cross should cover the icon, or if the control module type
malfunctions, an ErrorIcon should be visible in the control module type icon.

Another kind of dynamic icon indication is used when a number of control module
types are connected in a chain and dynamic information is transferred backwards in
the connected chain.

Suppose one control module type disregards the information from the previous
ones. Then information about this may be sent backwards and indicated in the icons
of the previous control module types. In this case, a dimmed pattern should be used
as a background of the icon and all operator windows. Example: The control module
types for analog control loops.

The Difference between basic Icons and Control Module Type Icons

The icons in IconLib (basic icons) do not have a background nor a border. The icons
are transparent apart from the actual graphical objects in the icon. The reason for
this is that it should be possible to build control module type icons by using several
IconLib icons that may partly cover each other. It is therefore necessary to have a
transparent background in the IconLib icons (see also Graphical Layers on page 43).

The control module type icons should not be transparent; they should have both a
background and a border (important if modules are partly placed on top of each
other). Therefore, the icons should contain a rectangle that has the same size as the
icon, with the following colors:

• Line color: -3 (Foreground color)

• Area color: -2 (Background color)

Control Module Types for Control Module Icons

Normally the control module type icon should be a single control module. If the
icon is used in several types in the library, the icon should be a private control
module type.

Icons Section 4 Engineering Interface

50 3BSE042835-600

If the icon is in a template type, the icon must be a public control module type. The
name of the type should be NameIcon. For all icons, the control module instance
name should be Icon.

Size of the ErrorIcon

If the symbol in the module icon is not large the ErrorIcon should be in the
background of the module, and cover almost the whole icon. The ErrorIcon should
be put behind the symbol.

If the symbol in the icon is large, the ErrorIcon should be smaller and put where it
can be clearly visible.

Icons in IconLib

IconLib contains a number of general icons (control module types) that are common
to all libraries. They have transparent background and frame because it is possible to
combine them by putting one on top of the other. Another reason is that a red
ErrorIcon should be visible in the control module type icon in case of error, and
must not be covered by the other “sub icons”. The interior of a closed symbol in an
icon should, however, not be transparent.

It is important that these icons are used in the same way in all the libraries. The
following example categories describe how these icons should be used:

• Maneuver icons - The maneuver icons should be used together with interaction
objects for maneuvering process objects or machines. The icons look like the
actual buttons that can be found on a machine, and the result of clicking on this
type of icon should give the same result as pressing a button on the real process
object or machine.

• Mode icons - The mode icons should be used for presentation of the current
state or mode of a process object. For example, a process object that is in
manual mode can be indicated by the ManModeIcon.

• Command icons - A command icon should be used together with an interaction
object. If the operator clicks on this type of icon, some function should be
activated.

Note that the graphics of the icons may be changed in the future. The meaning of the
icon should, however, not be changed.

Section 4 Engineering Interface Function Block Design

3BSE042835-600 51

Function Block Design
When programming using function block diagrams the layout of a function block is
important. The layout of a function block is determined by the order of the
parameters, the length of their name, and their direction.

The parameters of a function block type can be divided into groups reflecting their
usage, for example alarm handling, or group start handling. The parameters within a
group are order according to their direction as follows:

1. IN_OUT

2. IN

3. OUT

This order is also reflected in the layout of the function block since parameters with
In direction appears on the left side of the function block, and those with Out
direction on the right. Parameters with In_Out direction has a connection on both
sides of the function block, see Figure 7. This is relevant only to the FBD
programming language.

For all functions or function block types in the diagram editor it is recommended to
always connect 'true' to the EN port. For SIL1-2 and SIL 3 diagrams it is mandatory
to do so.

Parameter Names

The parameter names of the function blocks are visible in the function block
diagram and control diagram editors, and thus affect the element size. It is therefore
recommended that the names are as short as possible. The same applies to control
module parameters in the control diagram editor.

Short names of Function Block types and parameters are important with respect to
how many Function Block symbols that will fit on a screen or printed page in the
Function Block Diagram (FBD) language. In FBD, the possibility to simultaneously
see many symbols and their connections is essential for the easy reading of the
logic.

Unnecessary paging (both on screen and print-out) has a most awkward effect on
reading ease and requires more space for page references. Also note that using
upper and lower case letters improves the readability of names, for example

Function Block Example Section 4 Engineering Interface

52 3BSE042835-600

ManMode is better than MANMODE. The POU editors allow use of upper and
lower case letters for declaration of parameter names, and that the user refers to the
name in any form, as long as the letters are the same (for example entering
ManMode is the same as entering MANMODE).

A short name is more space efficient to use than a long name and easier to read. This
assumes, of course, that the user knows what the name means. Standardized short
names or acronyms are most helpful in this respect, for example Pv = Process Value,
and T = time. It should also be kept in mind that a long name not necessarily
provides more - or enough - information. Hence, a shorter name together with a
good description proves often to be the best alternative.

In addition, in the editor, it is often possible to show the parameter description
adjacent to the parameter name for more clarity. Seldom used or unusual parameter
names may require longer names to be understandable (for example SourceSuffix),
compared to traditionally used names (for example Min).

With the exception of InteractionPar (see further Section 5, Operator Interface), the
length of parameter names in functions and Function Block types shall not exceed
eight characters. When this is not possible, up to twelve characters are allowed.
These restrictions apply equally to graphically connected parameters in control
module types. Other parameter names in control module types shall be as short as
possible, and easy to understand. Note, however, that for custom designed object
types, the user may assign longer names to parameters, up to the system limit of 32
characters.

Avoid structured data types in Function Block types because these are not suitable
in Functions Block Diagrams, since it is not possible to connect the components to
other function blocks. The parameters in the connection list should be divided into a
number of groups. The grouping of the parameters should be done in an object
oriented way. This means for example that Min, Max and Unit of a signal should be
grouped together with the signal itself.

Function Block Example

The declared parameter direction will affect the graphical layout of the function
block. Each parameter will appear in the sequence it has been declared, whereas
parameters of IN direction will appear on the left side, and OUT parameters on the
right side in the FBD language.

Section 4 Engineering Interface Function Block Example

3BSE042835-600 53

An IN_OUT parameter has connections on both side of the function block, see
Figure 7. A graphical consequence of this is that parameters of the direction IN and
OUT will be grouped, between IN_OUT parameters, see Table 8.

IN and OUT Parameters declared in
sequence of 1 to 16.

IN and OUT Parameters declared in
sequence of 18 to 42.

IN_OUT Parameters declared
as number 17. Separates parameters
into a new group with start from 18.

Function Block Example Section 4 Engineering Interface

54 3BSE042835-600

Figure 7. A graphical consequence for declared parameters.

Section 4 Engineering Interface Function Block Example

3BSE042835-600 55

Table 8. Parameter list

Name Data Type Direction Name Data Type Direction

1 Enable bool in 24 PriorityMode bool out

2 Name string[30] in 25 PriorityStart bool in

3 Description string[40] in 26 PriorityStop1 bool in

4 Interlock bool out 27 PriorityStop2 bool in

5 SetAuto bool in 28 PriorityStop2Txt string in

6 AutoMode bool out 29 PriorityStop3 bool in

7 AutoStart bool in 30 PriorityStop3Txt string in

8 AutoStop bool in 31 PriorityStartMan bool in

9 AutoSP1 real in 32 PriorityStopMan bool in

10 ManMode bool out 33 PriorityStopManTxt string in

11 ManModeInit bool in 34 PrioritySP1 real in

12 PanMode bool out 35 OutOfServiceMode bool out

13 SetPan bool in 36 LocMode bool out

14 PanStart bool in 37 IlockStart bool in

15 PanStop bool in 38 IlockStop bool in

16 PanSP1 real in 39 Inhibit bool in

17 GroupStartIn GroupStartStep
Connection

in_out 40 ObjectTest bool in

18 GroupStartMode bool out 41 ScaledSpdAct real out

19 GroupStartILock bool in 42 ScaledTrqAct real out

20 ContinueStartSeq bool in 43 Status DintIO in_out

21 ContinueStartSeqTxt string[40] in 44 ActCurrent DintIO in_out

22 ContinueStopSeq bool in 45 NomCurrent DintIO in_out

23 ContinueStopSeqTxt string[40] in 46 ActSpeed DintIO in_out

Function Block Example Section 4 Engineering Interface

56 3BSE042835-600

47 ActTorque DintIO in_out 71 TrippedStat bool out

48 Command DintIO in_out 72 ALStateFault dint out

49 SpdRef DintIO in_out 73 AEConfigFault dint in

50 TrqRef DintIO in_out 74 AESeverityFault dint in

51 TrqSelectorOut DintIO in_out 75 EnableFault bool in

52 WindowCtrlOn DintIO in_out 76 CondNameWarning string[15] in

53 EStop bool in 77 WarningEnabled bool out

54 EStopRamp bool in 78 Alarm bool out

55 UseSP2 bool in 79 AlarmStat bool out

56 ReadyToSwitchOn bool out 80 ALStateWarning dint out

57 Run bool out 81 AEConfigWarning dint in

58 AtSetpoint bool out 82 AESeverityWarning dint in

59 AboveLimit bool out 83 EnableWarning bool in

60 SP2Used bool out 84 CondNameObjectError string[15] in

61 TorqueSP real in 85 ObjErrEnabled bool out

62 FollowerDrive bool in 86 ObjErr bool out

63 WindowControl bool in 87 ObjErrStat bool out

64 TrqSelectorValue int in 88 ALStateObjectError dint out

65 TrqSelectorErr bool out 89 AEConfigObjectError dint in

66 Reset bool in 90 AESeverityObjectError dint in

67 AlarmsDisabled bool out 91 EnableObjectError bool in

68 CondNameTripped string[15] in 92 AlarmsAck bool in

69 FaultEnabled bool out 93 AEClass dint in

70 Tripped bool out 94 InteractionPar ACStdDrivePar in_out

Table 8. Parameter list (Continued)

Name Data Type Direction Name Data Type Direction

Section 4 Engineering Interface Diagram Design

3BSE042835-600 57

Diagram Design
Using the Diagram editor allows mixing of functions, function blocks, diagram
instances and control modules in the same diagram. The diagram is based on
manual layout. This means the user can freely position blocks on the page.

The graphical connections are drawn using auto-routing. When two ports are
graphically connected the line will automatically be drawn in a free area, so that
blocks and labels are not crossed. When objects are moved the affected graphical
connections will be re-drawn.

In a single diagram it is possible to declare and use variables and communication
variables. In a diagram type it is possible to declare and use parameters and
variables.

When invoking functions or function block types in the diagram editor it is
recommended to not include the EN port, this ensures that the EN is set to true and
that the functions or function block types will be executed.

The diagram can have up to 100 pages.

Data Flow Order Section 4 Engineering Interface

58 3BSE042835-600

Data Flow Order

In the diagram all invocations are sorted in to a data flow order. The data flow order
of the invocations are decided by the connections which depends on the data flow
order they are connected to each other.

If it cannot be determined by the connection in what data flow order the invocations
shall be sorted, for example if an invocation has two output that are separately
connected to different invocations, it is the invocation closest to upper left corner in
the diagram that will be sorted first in the data flow order.

Figure 8. Diagram Example Containing Different Invocations

Section 4 Engineering Interface Data Flow Order

3BSE042835-600 59

 Figure 9. Flow Order Determined by Graphical Placement

Execution order Section 4 Engineering Interface

60 3BSE042835-600

Execution order

For control modules the execution order is determined by the normal code sorting.
The numeric execution order indication (after the instance name) indicates the
execution order of the forward code blocks.

In the Figure 10 the code sorting is done in two ways. The code execution of the two
invoked CMTypes marked with the red rectangle will be code sorted as normal for
control modules. This means that, for example a PID loop that are dependent on the
code sorting for control modules to operate optimally will work in the Diagrams.

For the rest of the diagram the normal data flow order will determine the execution
order of the Diagram. The data flow order in Figure 10 Flow order and Control
module code sorting will be as follows.

1. FBtype1_2:1

2. (CMType_1:2 and CMType_2:3 sorted according sorting rules for control
modules)

3. FBType1_3:4

Figure 10. Flow Order and Control Module Code Sorting

Section 4 Engineering Interface Reverse and Display value attribute on data types in diagrams

3BSE042835-600 61

Reverse and Display value attribute on data types in diagrams

As an result of the execution order described in Execution order on page 60, the
reverse attribute will work for control modules in diagrams.

Split and Join functions shall not to be used with structured data types containing
components with the reverse attribute. Functions and function blocks cannot handle
reverse attributes.

For diagrams there are also a attribute Display value for datatype. If the attribute are
set for a component in a datatype this value will be shown in online mode for the
connection.

Reverse attribute on data types in Diagram types

Bi-directional logic is handled by Control Module types, but it is possible to use a
diagram type as well. The forward signal flow can be implemented in the diagram

Figure 11. Control Modules in Diagrams

Variable and Parameter Section 4 Engineering Interface

62 3BSE042835-600

code block, but the backward signal flow must be implemented in a separate code
block.

In Figure 12, the control diagram code represents the forward data flow and the ST
code represents the backward data flow. The execution order of the code blocks will
sorted according to the code sorting and algebraic loops for control modules.

Variable and Parameter

There are two ways of connecting parameters and variable in diagrams. Either by
defining the parameter or variable name directly in the connection node of the

Figure 12. Diagram Type with Control Diagram (Forward) and Structured Text
(Backward and Set_Output) code blocks

Section 4 Engineering Interface Interaction Windows in Online Mode

3BSE042835-600 63

invoked object, or it is possible to insert a variable or parameter object in the
diagram as in the lower example in the figure.

If the parameters and variables are inserted in the diagram as objects, instead of just
textual connections, then the load increases in the editor, but the controller load is
not affected.

Interaction Windows in Online Mode

Introduction

There are two types of interaction windows for interaction in Control Builder;
Interaction windows (primary) and Information windows (secondary).

Figure 13. Connecting Parameters and Variables in Diagrams

Introduction Section 4 Engineering Interface

64 3BSE042835-600

Figure 14. (left) Example of an Interaction window and (right) an Information
window.

The instance name on the Interaction window (left image on Figure 14) is called
Faceplate. The instance name on the Information window (right image on
Figure 14), where interaction parameters are assigned, is called InfoPar. Additional
Interaction windows shall have a name related to the functionality (for example,
InfoAlarm, where alarm settings are to be done).

Information windows are activated from the Interaction window. Control modules,
Function Blocks, and Diagrams designed for engineering interaction, shall have one
or more interaction windows. The engineer may then control the control module or
Function Block from these windows.

The information that can be contained in a window can be divided into three
categories:
• Settings of functions to be used continuously which can be affected both by

operator and program code.
– Example: Integration time for a controller.

• Commands with or without associated input fields that can be affected both by
operator and program code.
– Example: Get a certain recipe (recipe name and the command itself

needed).
• Presentation only.

– Example: Actual value for a controller.

Section 4 Engineering Interface Interaction Windows

3BSE042835-600 65

Interaction Windows

The interaction window contains the most important and frequent (mode changes,
etc.) user interactions. There is also a sub window or a part of the interaction
window which is called an Information window.

When the object type is selected, an interaction window shall be displayed. If an
object type has more than one window, only the first one, that is the one that appears
when the object type is selected, may be an interaction window. The windows that
are reached from the main interaction window should all be information windows. If
the main (interaction) window has been closed, it should be possible to re-open it
from any of the secondary (information) windows via a button labeled with the
ManoeuvreIcon.

Information Windows

A control module that is displayed as an information window should have the name
Info and be accessible via the path string ControlModuleName*Info (where
ControlModuleName refers to the parent control module) to simplify localization
from outside. If a module has more than one information window their names
should differ by a suffix, for example InfoBar, InfoHist.

When to use Interaction Windows

In general, windows are suitable when you have parameter values that should be
tunable online (for example, controller gain) or if the user should be able to take
control of the object (set to manual mode).

It is recommended to use interaction windows in Function Block Types when the
number of parameters is so large that the FBD becomes confusing.

Window Appearance Section 4 Engineering Interface

66 3BSE042835-600

Typically, Control Module types are more complex than Function Block Types.
Therefore, interaction windows are more often necessary for Control Module types
(normally to facilitate configuring). Otherwise, the same rules as for function blocks
apply.

Window Appearance

General Properties for interaction windows:

• Occupy a minimum of screen space

• If possible, group the window contents

The window width shall be a 0.192, 0.30, 0.35, 0.50 or 1.00 of the screen. The
height of the window shall be set to 0. This means that the height is determined by
the width and the shape of the control module.

The size of the window shall further be multiplied with the project constant
cWindowSizeFactor. The cWindowSizeFactor is defined in a way that a window,
showing a control module with width 4.0, has the same width as the screen if
cWindowSizeFactor is 1.0. The project constant cWindowSizeFactor in BasicLib has
a default value of 0.6.

The property Owner of interaction windows should normally not be used. The
property should only be set if the operator window is a full size window (XSize =
1.00) that contains smaller windows. The attribute RelativePos is normally used if
an interaction window is popped up from another window. The second window
should be positioned relative to the first window using the attributes xPos and yPos,
so that no part of the first window is covered by the second window. For full size
windows the attribute RelativePos should be false.

An interaction window (popped-up from the control module instance in the control
module editor) should appear with its lower left corner in the middle of the control
module icon (achieved by setting relative position x = 0, y = 0). If it is possible to
pop-up more windows from the interaction window, there top should be aligned
with the interaction window top. They should also appear edge to edge with the
interaction window. When window placement is made by adjusting relative x- and
y-positions, the relative positions must be multiplied with cWindowSizeFactor to
keep the alignment for different cWindowSizeFactor.

Section 4 Engineering Interface Design

3BSE042835-600 67

In exceptional cases there may be parameters to determine where the window
should appear. There may also be a parameter, which determines if the position is
relative to the module or to the screen.

Window positioning should be as follows: parameters to the right, trim curve to the
left, and bar graph beneath the interaction window.

Design

Window layout

Table 9. Width of windows and control modules

Window width Control Module width Used for windows with

0.192*WSF(1)

(1) WSF= cWindowSizeFactor

0.8 buttons, check boxes, option buttons,
one vertical bar.

0.30*WSF 1.2 parameter lists, several vertical bars.

0.35*WSF 1.4 parameter lists with additional
information or with long texts.

0.50*WSF 2.0 history graphs

1.00*WSF 4.0 configuration of large functions, for
example fuzzy, batch

All interaction windows shall have equally high texts, regardless of the window size.
To achieve this, the width of the control module that represents the interaction
window has to be proportional to the width of the interaction window according to
the following table:

In some cases several input fields in an interaction window are logically connected
to each other. Examples are option buttons where one and only one alternative in a
group of alternatives is selected. The grouping should be done with a rectangle
(similar to the ActiveX control Frame in standard MS-Windows programming)
around the interaction fields in question. Use window background (-2) for the frame
caption text to obtain look similar to a Frame ActiveX control. Note that it is

Design Section 4 Engineering Interface

68 3BSE042835-600

possible to have separate buttons (for example, pairs Apply/Undo) for the different
logical groups.

Figure 15. Grouping of option buttons.

The following rules should be used in the control module for the interaction
window:

• Grid size = 0.02

• Text height = 0.1

• Text height for group = 0.08

• Distance to borders = 0.02

• Distance between texts in a group (vertically) = 0

• Distance between groups can vary, yet be at least 0.02

• Straight (aligned) columns in each group

• Check boxes, option buttons and input fields are used for inputs

• Icons can be used for distinct indications. It is also permitted to use check
boxes and option buttons in the same way as a dynamic input field

• “Apply” / “Undo” buttons when two or more interdependent input fields. The
buttons should have size 0.3x0.1

• Input fields should be center aligned

• For option buttons and check boxes, the text should be to the right of the
interaction object.

• The caption texts in an operator window should have the height 0.16.

• A value may have a ResetIcon to the right. Selecting the ResetIcon will reset
the value (to initial value) or, in some cases, other reasonable values.

• Color assignment shall follow common guidelines and regulations, for example
red for alarm indication, and yellow for warning indication. Use project
constants (cColor) to assign colors to objects.

Section 4 Engineering Interface Interaction principles

3BSE042835-600 69

 Figure 16. Interaction window design.

Interaction principles

Synchronization of data write

Sometimes several values should be applied simultaneously, for example the tuning
parameters for a PID-controller. There is a built in solution for this in the Control
Builder graphics. It is possible to assign OK/Cancel buttons that are associated with
several input fields.

Another solution is that the values are stored in a temporary set of parameters when
an Apply button is pressed. There should also be an Undo button to restore the used
values. This method requires extra variables in the controller, but is good to use
since the same method can be used for the Operator Workplace graphics.

Interaction principles Section 4 Engineering Interface

70 3BSE042835-600

Dimming of objects

Texts are dimmed by changing the color of the text. Normally the text has
foreground color (-3). The alternative color, that is the dimmed color should be 4.
The condition for using the alternative color should be NOT EnableName.

The project constant cColors.Disable function can be used for dimming the objects.

If the operator window has an input field (interaction object) for a physical value,
this input field usually is preceded by a text presenting the name of the quantity, and
succeeded by a text presenting the unit of the quantity. If the input field is disabled,
both the preceding and succeeding texts should be dimmed. Static texts and text
objects that present values that are not changeable from the user window should not
be dimmed. Icons that cover interaction objects should always be dimmed if the
interaction object is disabled.

Figure 17. Dimming of an input field (here is the Offset field dimmed).

3BSE042835-600 71

Section 5 Operator Interface

Operator refers to a user that is interacting with the system via a graphical interface
in online mode. This includes actions during testing, commissioning, tuning,
maintenance and daily operation via an operator‘s Workplace.

Introduction
Graphic interfaces fetch data via parameters and variables in the object type. In the
sub-section InteractionPar on page 36, the concept of InteractionPar, a parameter of
a structured data type was introduced. The InteractionPar concept is vital for the
standard libraries operator interface.

Operator Workplace Interaction Section 5 Operator Interface

72 3BSE042835-600

Operator Workplace Interaction
It has to be decided for each object type if it should have operator graphics in the
Workplace (Process Portal). Examples of object types that should have Operator
Workplace graphics are high level objects such as Motors, Valves, PID-controllers
etc. and objects that are alarm owners.

For objects that will have interaction possibilities in a Workplace, with the user or
other objects, the attribute Aspect Object shall be set on the object type. Aspect
Object is an attribute that decides whether the object will be visible in the Plant
Explorer, or not.

Design

Reuse of graphic elements should be practiced in order to reduce maintenance.
Since the system do not fully support reuse of graphic elements in combination with
Library version handling, a specific method has been developed. The main idea is to
put the reuse elements in a special support library from which they are dragged and
dropped to be instantiated.

The Operator Workplace graphics can be divided in two categories, Faceplates and
Display Elements. These two categories are described below.

Faceplates

Each object with Workplace graphics should have a faceplate named
“MainFaceplate”. The faceplate is used for supervision and control of the object.
The faceplate can have three different views; Reduced, Normal (Figure 18) and
Extended (Figure 19).

The Normal view is mandatory and has a predetermined size to fit into group
displays.

The Reduced view is default view and should contain the minimum of information
that is needed for normal operation. The reduced faceplate can be omitted if the
information will be the same or nearly the same as in Normal view and it is
impossible to reduce the size.

Section 5 Operator Interface Faceplates

3BSE042835-600 73

Figure 18. Example of (left) Reduced faceplate and Normal faceplate.

The Extended view is optional and should be used for additional information that
does not fit in a Normal view and is not so often used during normal operation.

Figure 19. Example of Extended faceplate

Display Elements Section 5 Operator Interface

74 3BSE042835-600

Display Elements

The Display Elements are used for graphic displays. The following Display
Elements aspects are mandatory for objects with Operator Workplace graphics:
• Reduced Icon
• Icon
• Tag

Reduced Icon

Icon

Tag

Figure 20. The mandatory display elements; (left) Reduced Icon, (middle) Icon and
(right) Tag.

In addition, the following Display Element aspects can be used if suitable:
• Value
• Bar

Value
Bar

Figure 21. The additional display elements; (left) Value and (right) Bar.

The Display Element Value and Display Element Bar aspects should be used when
the object has one or more numerical values that can be considered as significant for
the function, for example the output from a PID controller.

Section 5 Operator Interface National Language Support (NLS)

3BSE042835-600 75

National Language Support (NLS)

All texts in the faceplates shall be NLS-strings. The NLS-translator is common for
all standard libraries so that the total number of NLS-strings is limited. The NLS-
translator should further be placed outside the libraries since there is no easy way to
have version handled NLS-strings. Thus, since there is no version handling of NLS-
texts, it is not allowed to delete or change the meaning of a text once it has been
included in a release.

The alarm and event Message parameter and the initial value of the alarm
ConditionName parameter should also be NLS-treated via an Alarm and Event
translator. The Alarm and Event translator shall be common for all standard libraries
and placed outside the libraries.

Figure 22. Example of NLS treated default value of Condition Name.

Interface between Control Builder and Operator Workplace

Control Builder parameters and variables are visible in the Operator Workplace via
the OPC server. Variables that are not used in the Workplace graphics should be
given the attribute hidden. Function block parameters should never be given the
attribute hidden even if they are not used in the graphics. The reason for this is to be
consistent with Control Module parameters, which cannot have any attributes.
Extensible parameters cannot be accessed via the OPC server.

Naming of any non-hidden variables should follow the same rules as parameters,
see Section 3, Parameter Interface (no restrictions on name length).

Interaction principles Section 5 Operator Interface

76 3BSE042835-600

Permissions for Variables that are not Hidden

All parameters and variables that are not hidden are assumed to be read by
everyone. Therefore, no read permissions are assigned. Table 10 describes the write
permissions that can be used. These are restricted.

Interaction principles

The interaction principles in this section should be seen as a complement to the
general 800xA process graphic principles.

Use of buttons and check boxes in faceplates

Check boxes shall be used to enable or disable functions and signals.

Buttons in the button row of the faceplate framework shall be used to control main
functions of the object.

Buttons inside the faceplate elements shall be used to start or stop sub functions.

Table 10. Write permissions

Write Permission Applied for

Administrate Read only parameters / variables.

Tune Tuning parameters. For example Pid parameters, filter time,
etc.

Operate Parameters which are expected to be edited in the daily
operation of the plant. For example, Mode changes, start and
stop, etc.

Section 5 Operator Interface SIL considerations

3BSE042835-600 77

SIL considerations

Access Level

The Access Level defines the rules for changing online values of a running SIL
application.

Access Level shall be configured on parameters used for interaction in faceplates of
SIL1-2 and SIL 3 marked types.

For variables and parameters of simple data type the Access Level shall be
configured on the variable/parameter (configured in the object type). For variables
and parameters of structured data type, typically InteractionPar, the Access Level
shall be configured on the variable/parameter and on the data type components.

Only variables/parameters (or their components) used for interaction shall be
configured. The Access Level shall be set to Confirm. Other components, types,
parameters, and variables shall not be configured and will keep the default Access
Level Read-Only. When the system evaluates the Access Level for an OPC property,
the whole path is evaluated and the most restrictive setting found along the path will
be the setting for the whole path.

This means that the Access Level for sub-object instances shall be overridden to
Confirm in case the sub-objects have a faceplate with interaction.

Support for Confirm Operation Dialog Section 5 Operator Interface

78 3BSE042835-600

Support for Confirm Operation Dialog

The faceplate shall be designed so that it is possible to recognize Operation, Object,
Property, and Value in the Confirm Operation dialog.

For properties that can be changed through the faceplate (SIL marked types), a
separate NLS string shall be defined for confirm write support in the NLS Manager
for Access Management.

The Safe Online Write requires that the information displayed in the confirm write
dialog is stored and handled separately from what is displayed in the faceplate
(for example, using different NLS managers, in order to avoid systematic errors).

In the Confirmed Write Support aspect on the type, all changeable properties are
configured with a Confirm Name, Confirm Value(s), and Operation.

The Confirm Name text shall describe what the operator changes. Examples: Mode,
Command, HH Level.

The Confirm Value text shall describe the (process-) action of the operator.
Examples: Set, Reset, Enable, Disable, Auto, Manual.

Confirm Value texts shall always be defined for Boolean values (one text for true
and one text for false). Value texts for integer values shall be configured in case the
integer value represents something except the value itself, for example, a mode.

Figure 23. Confirm Operation dialog

Section 5 Operator Interface Support for Confirm Operation Dialog

3BSE042835-600 79

Example:

For other data types, for example: real and time, no Value text is necessary. It is the
value itself that is displayed in the Confirm Write dialog.

The mapping between the value and the Confirm Value NLS string is made in the
Confirm Write Support aspect on the type.

The Operation has a default configuration which is "'Set ' %P ' to ' %V" where %P
and %V refers to configured Property Name and Property Value, respectively.

The NLS identifiers for the Confirm Operation dialog shall be named as the
identifiers for the faceplate, but with a '_AM' suffix.

For Control Builder standard libraries, the NLS identifiers for the Confirm Write
dialog shall be configured in the 'NLS Resource Manager for AM' which is located
under Object Type Structure - Libraries - Access Management.

For user defined libraries a corresponding NLS Resource Manager shall be added
for example in a sub object to the Libraries object.

Example:

This example shows the configuration for the action when ordering the manual
value to On. The involved property is InteractionPar.ManValue. When pressing the
On button in the faceplate the dialog shown in Figure 24 appears.

Table 11.

Property: SignalErrorMode (dint)

Value Description

1 Through

2 Freeze

3 Pre-determined

Figure 24. Relation between Faceplate information and Confirm Operation dialog

Support for Confirm Operation Dialog Section 5 Operator Interface

80 3BSE042835-600

The Faceplate button in Figure 24 is configured in the Main Faceplate aspect with a
Property name and Property Value to which it is set, see Figure 25.

Figure 25. Faceplate button configuration showing associated Property Name and
Property Value

Section 5 Operator Interface Support for Confirm Operation Dialog

3BSE042835-600 81

In the Confirmed Write Support aspect on the type, the property is associated with a
Confirm Name, Confirm Value(s), and Operation, which is displayed in the
Confirm Operation dialog.

Figure 26. Configuration of the aspect Confirmed Write Support for the Confirm
Operation dialog shown in Figure 24

Support for Confirm Operation Dialog Section 5 Operator Interface

82 3BSE042835-600

Section 5 Operator Interface Graphical Indication of ParError

3BSE042835-600 83

Graphical Indication of ParError

The ParError parameter, introduced in the sub-section ParError on page 37,
indicates when an input parameter of an object is out of range. In that case the
erroneous value is not used in the code. Instead a documented 'safe' value is used.

The graphics, Operator Workplace and Control Builder, shall always show how the
object works. When ParError occurs the 'safe' values or last good values are used
and the object works according to them. Therefore the graphics shall show the 'safe'
values and the effect of them.

For example, if AEConfig has an out of range value the 'safe' value 1 is used. The
value 1 means that the object is configured with an alarm. In this case an alarm icon
and button shall be displayed as they are when AEConfig=1.

An exception from this rule is how the components of InteractionPar are displayed.
The values are entered from the graphics and the entered value shall be displayed. In
most cases this is not a conflict because it is not possible to enter out of range values
from the graphics. The reason for the exception is that the value of the component in
InteractionPar must be displayed, because the interaction is done with this variable.

The Operator Workplace Graphics

The parameter error situation shall be indicated in the faceplates and display
elements. The faceplate indication shall be a small red triangle placed in a layer
above the ordinary icon in the first position in the indicator row. In case of parameter
error when no other icon is visible, the error is indicated with a bigger red triangle.
The Figure 27 below show the different possibilities together with the Force icon.

The Operator Workplace Graphics Section 5 Operator Interface

84 3BSE042835-600

Figure 27. ParError indication on a Graphic Element Reduced Icon (left) and in
Workplace faceplates (right).

The CB Graphics

Control Builder graphics have the corresponding red triangle displayed in the upper
left corner of the interaction window Figure 28.

Figure 28. ParError indication in CB interaction window.

3BSE042835-600 85

Section 6 Program Code Issues

Program Code

Comments are not downloaded to the controller; hence it does not occupy any
controller memory space.

Structured Text shall be used for all program code in the library types. The only
exception is the use of SFC in template types, see Templates on page 94.

The most important general requirement on the code is that it should be efficient.
This means that it should use few local variables, execute fast and generate little
communication. However, although high performance may be the most important
factor in types (especially in those that will be invoked many times), the code should
still be possible to interpret, also for persons who have not written it. Therefore,
supply comments that clearly describe the different parts of the code. Do not forget
that the identifiers of variables and parameters should be descriptive as well.

In addition, logical indents of loops etc. should be used at all times. Follow up
copy/cut and paste operations carefully as these operations tend to undermine the
indentation patterns.

Although SFC might be used in templates, it shall not be used in other library types
since it is less efficient. An ordinary code block can be designed to behave as a
sequence if the code uses an integer variable, preferable named PrgStep, as a
sequence token. The integer variable value represents the step number of the code
and the code is divided into sections that represent steps. The program steps are
normally numbered in 100-steps. Conditional statements based on the token
variable determine the execution of the different code sections. The principle can be
seen in Figure 29.

Descriptions Section 6 Program Code Issues

86 3BSE042835-600

Figure 29. A code block using a sequence token variable called PrgStep.

Descriptions

A description should be provided wherever possible. This means that all object
types, and data types shall have a brief (three to four short rows) and clear
description to be shown under the Description tab in the lower pane of Project
Explorer when the object is selected. This description text is used as base to the
online help. It is also recommended to initiate the description of function document
with this text for the specific object.

Do not write any reference to the online help in a parameter description in an
object type. Normally, the online help describes important parameters that require
additional explanation.

Section 6 Program Code Issues Variables and Project Constants

3BSE042835-600 87

A structured data type component shall have a line of text briefly describing its
purpose/function. Parameters in object types should be described similarly.

Variables and Project Constants

The following recommendations apply to the variable names:

• Variable names shall be descriptive.

• Underscore (_) shall not be used; instead, separate the different parts of a
variable name with uppercase letters.

• Avoid Global/External variables whenever possible.

• Avoid Access variables whenever possible.

• Avoid very long names.

• Add Old to the variable name to create a variable that stores the old value.

• Add Loc or Int to the Avoid the use of the “Retain” attribute on a variable,
when it is not necessary. For example, when the variable obtains its initial value
at warm restart and when it is written to before it is read, “Retain” is not
necessary (it only contributes to increased stop time during download of
changes to the controller).

If it is sure that a value of a variable will not change, it shall be assigned the attribute
“constant”. This solution also yields a slightly reduced CPU load.

It is not recommended to suffix or prefix variables or user defined variables to show
it is a variable, for example, varName or Namevar.

During the development and testing phase of a new module, it is useful to have a lot
of status variables in the code. It may be necessary to have one variable for each
procedure call in order to make debugging easier. But, when the debugging phase is
completed and the module works as expected, the number of variables shall be
minimized. This can be achieved by using the same status variable for several
procedure calls.

Object Sub-Structures Section 6 Program Code Issues

88 3BSE042835-600

Project Constants

Project constants can be read in libraries and be changed project wide with a single
operation. They are suitable for library items that the user may want to change.
Examples are date and time formats, logical colors and names, alarm condition
texts, and alarm and event texts.

Project constants shall not be used to change functionality of an object
(for example, as initial values and as comparisons in code).

Since the project constants are stored on library level, it is important to consider
incompatibilities at new library versions. There can be only one default value of a
project constant with a certain name and since it must be assumed that a library
version should co-exist with previous version, the default value should never be
changed in new library versions.

Project constants shall begin with a lowercase “c”, followed by an uppercase letter.
For structured project constants, this rule applies to the main name only, not to the
individual components (for example cColors.Error).

Object Sub-Structures

Protection and Scope

Internal function block/control module types, that are used for code-reuse (see
further Re-use of Code on page 89), shall have both Protection and Hidden attribute
set to True. See Protection Attribute on Types on page 42, for the non-hidden
function block types/control module types

All non-hidden object types shall have Public scope. The scope of an internal type
depends on the usage. The scope shall be Private if the type only is used within the
same library. Types used in other libraries must, of course, have Public scope. PPA
aspect can be used for object oriented graphical design even if the types are
protected, by using the option Sub Objects visible in PPA.

The non-hidden object types with Private scope shall be sub objects to the object
type with Protection attribute.

Section 6 Program Code Issues Re-use of Code

3BSE042835-600 89

Re-use of Code

Names of object types on the same hierarchical level must be unique.

Code re-use requires more variables and execution time, but facilitates maintenance.
Internal (hidden) function block types should be used to improve the structuring of
object types. It is also possible to implement functions by means of placing sub
control module types within both Control Module- and Function Block types.
Control Modules within Function Block Types are mutually sorted. The following
shall be considered for internal types (yet, the benefits of efficient code should also
be recognized).

Avoid use of very simple function blocks for structuring or re-use of code; the
overhead caused by the resulting variable copying will be higher than writing the
equivalent code in ST.

Naming of object type formal instances is realized by omitting the Name part from
the corresponding type name. For example, if the object type name is PIDFaceplate,
the instance name becomes Faceplate, BiCore becomes Core, and so on. It is
desirable to have short, but descriptive, path strings in, for example error messages
including variable names. Object type instances that can appear in loop messages
should always have a descriptive name.

Simple data types should be used for parameters as far as possible in internal
Function Block types since this gives more general types that can be used in
different contexts with good performance. Only in rare cases may structured data
types prove to be a more efficient solution. When using structured data types of
direction Out, variable copying can be eliminated by declaring these as In_Out or
By_ref. Instead of variable copying, a single pointer (address) reference is used for
the entire structured data type and its components, something that saves memory
and execution time. Note that these benefits are not valid for simple data types
which should be declared according to their actual use. In-parameters should be
declared as In and Out-parameters as Out. Also note that by declaring a parameter
as In_Out, the compiler will consider it to be both read and written by the function
block. This might cause some problems when using sub function blocks; in control
modules as well as in function blocks. For control modules and diagram type
instances it will affect the code sorting and might cause sorting loops. For function
blocks it will be impossible to connect the parameter to a surrounding parameter
declared as In.

Re-use of Code Section 6 Program Code Issues

90 3BSE042835-600

It is possible to address sub function block parameters using dot notation. This can
be used in order to save memory and execution time. One way to use the dot
notation is for access of Out parameters. See the example in Figure 30, where the
variable x can be omitted by using dot notation. It is not possible to use dot notation
for parameters with By_ref attribute.

Figure 30. Example of dot notation for access of Out parameters.

Since the parameter value is stored in the function block, there is no need to assign
all parameters in every function block call. See the example in Figure 31 where both
memory and execution time is saved by the use of dot notation. Another variant of
this solution can be used when the same function block is called several times. The
fact that parameter values from the last call are stored can be used and not all
parameters needs to be assigned in each call. However, this solution should be used
with care, because one has to keep track of which values that actually are used.

Figure 31. Example of conditional assignment of parameter using dot notation.

If the input parameter default value is satisfactory, the copying becomes
unnecessary. It is therefore worthwhile to choose default values with care.

To connect a string literal to a function block, declare a variable of type String[] of
correct length (if no value is specified, the string length defaults to 40 characters)
with the attribute “Constant”.

Section 6 Program Code Issues Control Module Types

3BSE042835-600 91

Control Module Types

Code Sorting and Algebraic Loops

The code block sorting is a powerful tool that can be used to minimize delay
between input and output signals. This is achieved by dividing the code into
different code blocks in Control Builder. Code blocks can be used when information
is transmitted between objects in both directions using a structured data type. By
splitting the code into two or more code blocks it is possible to both send and
receive information within the same scan.

However, the situation is different when it comes to connections for example
reading and writing to single parameters. The basic principle is that an application
programmer should be allowed to write any IN parameter and read any OUT
parameter of a module without causing loops. This is achieved by writing to all
OUT parameters in a specific code block. This code block shall not contain anything
else but the writing to the OUT parameters. Local copies of the OUT parameters are
used in the other code blocks. These variables shall have the attribute nosort to avoid
loops. In order to secure that the output parameters are updated correctly, each of
these internal variables must be assigned in one code block only. If an output
parameter is dependant on calculations in more than one code block, there need to
be one internal variable with the intermediate result per code block.

For the parameter InteractionPar, the attribute “Nosort” is used under some
circumstances to prevent code loops. The code shall be written in such a way that no
component of InteractionPar is marked as "written".

A problem occurs when InteractionPar is passed into an internal Function Block as
an IN_OUT parameter. In this case, all components of InteractionPar shall have the
attribute "Nosort". This works fine in all cases except, when the order of assignment
of the components of InteractionPar is crucial. There is only one known case when
this order is crucial and that is when an "Apply" component is set. In this case, all
other components must be set before "Apply" is set.

Code tab names in control modules that begin with Start_ are sorted separately and
execute once before all other code in all other control modules in the application
after warm or cold start. The “Start_” feature can be used when a different code
sorting order is desired during initialization.

Table 12. Rules for code block read and write operation to a control module

Keyword
Rules for read/write operations to Control Module parameters from
a external code block

IN The parameter is written to and read from.

OUT The parameter is only read.

IN(OUT) The parameter is both read and written, but mostly written.

OUT(IN) The parameter is both read and written, but mostly read.

NODE Only connected. Read and write operation are done by other control
module.

EDIT Only written to, and only first scan value will affect the control module.

Control Module Types Section 6 Program Code Issues

92 3BSE042835-600

The code in the control module type should not be divided in code blocks for any
other reasons than taking advantage of the code sorting. Unnecessary code blocks
will cost extra execution time, especially in SIL-applications, and might danger the
code sorting.

A compiler switch exists to rule the code sorting loop detection. Code sorting loops
may hazard the object functionality at code modification elsewhere. It is
recommended to avoid and remove all kind of sorting loops before any download to
a controller takes place. It is also recommended to keep the compiler switch as
'Error' to avoid unforeseen errors.

The operation allowed on a parameter is governed by the type description keyword
(see also Type Description Keyword on page 32). All parameters can be connected
to the code block in question, but the rules for reading and writing is given in
Table 12.

Some special purpose parameters do not obey the above rules.
• InteractionPar is used for operator interaction, and is allowed to be both read

and write.
• I/O parameters of data types BoolIO, RealIO, DIntIO or DwordIO should only

be connected.
• Connection parameters for communication between control modules, should

only be connected.

Section 6 Program Code Issues Function Block Types

3BSE042835-600 93

Function Block Types

Even though there are no code sorting of code blocks within a function block type,
the code might be split into more than one code block. This make the code more
readable, especially for objects that implements different, non dependant functions.
In SIL application there is an increase of execution time for each switch between
code blocks, so the number of code blocks should be minimized.

Diagram Types

Diagrams are created under an application, and diagram types (which can be reused
as instances in a diagram) are created under a library or under the same application
as the diagram.

The FD code blocks in diagrams and diagram types allow mixing of functions,
function blocks, control modules, and other diagrams, and graphically connect them
to achieve a particular logic. The code in the function blocks is sorted according to
the placement in the diagram, and the code in the control modules are sorted
according to the data flow order. The actual execution order is indicated on each
instance in the diagram. The code sorting of the diagram has to be considered when
designing a diagram type. The use of function block types and control module types
with a diagram type has to be done with a understanding of how the code are sorted
in the diagram type. Signals in backward direction (components with reverse
attribute) cannot be handled by Split or Join elements. Instead, these signals must be
handled in a separate Structured Text code block in the same manner as in control
modules.

Data Types

Data types common to several libraries shall be placed in a supporting library.
Changing of initial values can be realized through project constants.

The data types can be divided into three categories:

1. Private data types, not used in parameters or in sub-data types in parameters.
Should have attributes Private and Hidden and have a complete description of
all components as well as the type itself.

2. Internal data types, where the content is of no importance for the user for
example graphical connections where the user has no interest of the single

Templates Section 6 Program Code Issues

94 3BSE042835-600

components in them. The data type should have attribute Protected and have a
complete description of all components as well as the type itself.

3. All other data types are presumed to be Public data types. All the Public data
types are important for the user. The Public data types should have a complete
description of all components as well as the type itself.

4. ISP values must be defined for all components in a data type on order to be
used for a communication variable in a SIL application.

It is not recommended to use the attribute State. Use a construction with a local
variable with the suffix Old, which holds the value of the variable from last scan.
The Old-variable should be assigned at the end of the code block in question.

Templates

There are two kinds of templates: those that are functional as is, and those that
require modifications to work. The latter category shall be NameTemplate (for
example, EquipProcedureTemplate). Code, intended to be changed by the user, shall
be put in templates. All other functional code should be placed in protected object
types. This strategy promotes safe future updates of programs.

Whether the “core” (that is, the code that does not have to be changed) of a template
should be designed as a function block type or a control module type, has to be
determined in each specific case.

In templates, it is recommended to use Structured Text. SFC may be used in
templates under certain circumstances, for example Batch recipes.

Naming of variables is especially important in templates (compared to protected
code), because the user shall be able to easily understand the design and function of
any given template. Refer to Variables and Project Constants on page 87, for
variable naming recommendations.

Task Considerations

The normal case is when a control module type inherits the task connection of the
surrounding object type. There might however be some special cases where it is
wanted to have a sub module/function block running in another task than its parent.
This kind of constructions are allowed but should be used with caution. One special

Section 6 Program Code Issues Parameter Dependency on Tasks and Controllers

3BSE042835-600 95

feature of sub function blocks executing in another task than its parent is that it will
not be executed at function block calls in structured text code.

Parameter Dependency on Tasks and Controllers

The tasks within a controller are recommended to have interval times that are
multiples of each other, for scheduling purposes. The tasks in different controllers
execute asynchronously.

For control modules and diagrams, the code is sorted to minimize delays in the
signal flow. The code sorting has no effect on control modules connected to
different tasks.

The task ownership of the parameter is divided between the tasks, according to the
particular task that writes to the parameter at a time. Therefore, it is possible to have
reliable execution of control modules over task and controller borders.

According to IEC 61131, function blocks are designed to execute in the same task as
the program they are part of. For example, some parameters like Done are only set
during one scan. This is the reason why an object in a slower task, reading this
parameter, may not receive it.

The passing of parameters to and from the function block is controlled by the
program task. The code in the function block that is connected to another task, runs
according to its task, but the parameters are updated according to the program task.
In such a situation, it is possible that the IN_OUT parameters of a function block are
changed during its execution, if a task switch occurs.

This problem does not occur for In and Out parameters, since they make use of local
copies within the function block, which remain unchanged during the execution of
the whole function block.

An application using function blocks shall not be separated into several tasks.

The initialization of objects using an IF-clause may not receive necessary input
parameters, if these come from objects residing in other tasks or controllers.

Calls to Asynchronous Functions

Use parameters like Enable to govern asynchronous Function Blocks. Do not use
SFC or IF-clauses since the asynchronous FB can have an internal state which will
influence next invocation.

Special functions Section 6 Program Code Issues

96 3BSE042835-600

Special functions

Handling of Input and Output Values

The code shall handle its input and output values in the following way:

The code shall have a predictable and reasonable behavior for all input values. Input
values, which are considered invalid, shall be mapped to valid input values. It shall
be described in the parameter description which values are considered invalid and
which valid values these are mapped to. For further details see Range Check on
page 103.

The object must have a predictable behavior when calculating output parameter
values. Situations like divide by zero and sqrt() of negative numbers shall be
prevented or handled in the code. The library object shall not give an overflow
output value if none of the input parameters have an overflow value.

Parameters of direction out and Parameters of direction in_out with the description
keyword OUT or OUT(IN) shall be written to in each scan.

Section 6 Program Code Issues Error Handling

3BSE042835-600 97

Error Handling

If there is any risk that the type may end up in an error state or have a malfunction, it
should have error handling.

If case of error, an ErrorIcon should appear in layer 1 of the module. An ErrorIcon
should also appear in all operator windows.

If an error occurs there should also be an output, called Error from the module. This
output should be boolean and be reset when the malfunction ends. In a program unit
the Error output may be connected to an AlarmCond.

Some control modules, which utilize more complex functions, may require a more
advanced error diagnostics. For these modules, an error display shall be included in
an interaction window. This error display should contain a text explaining the error
and the error code. The error code can come from a failed procedure call, or from
the code itself (Number range -5000 to -6000 for standard library objects). It may
also contain information about where the error has occurred in the code.

Alarm and Event Handling

If no specific reason exists, the more efficient type AlarmCondBasic shall be used.

If an object has alarm handling, the property Alarm Owner should be set.

The AEConfig parameter is used to define whether a supervised condition should
generate an alarm or event. The possible settings are:

AEConfig = 0, Supervision disabled.

AEConfig = 1, Alarm.

AEConfig = 2, Event generated both on condition activation and deactivation.

AEConfig = 3, Event generated on condition activation only.

AEConfig = 4, Supervision only, that is neither alarm nor event generated.

There can be more than one AEConfig parameter per object. It is then possible to
define different configuration for different condition within the object. For example;
the AEConfigH parameter configures the High condition, the AEConfigHH
parameter configures the High High condition etc.

Alarm and Event Handling Section 6 Program Code Issues

98 3BSE042835-600

Table 13 summarizes the Alarm and Event parameters for the Standard Library
Objects and Figure 32 illustrates the alarm and event logic.

Table 13. Summary of Alarm and Event parameters

Parameter Direction Data type Function

AEClass In Dint The class for all alarms in the
object.

AEConfigX In Dint Defines whether condition X
should generate an alarm or event.
Possible values are 0-4 (see
above). This parameter should be
used as a configuration parameter.

AESeverityX In Dint Severity for alarm condition X.

CondNameX In String[15] Name of the condition X. Shall
have a NLS-treated default value.

EnableX In Bool If false, the XStat (and XAct)
output is kept false and the
alarm/event generation is disabled.

InteractionPar.EnableX In Bool Same as EnableX but controlled
from faceplate. This component is
harmonized with EnableX and
actions from the alarm list. For
example, if condition X is disabled
from the alarm list,
InteractionPar.EnableX is set to
false.

When declaring the data type for
InteractionPar, the EnableX
component must be declared with
the attribute “retain”.

InhXAct In Bool Inhibits the XAct output. Only
introduced for a selection of
objects.

Section 6 Program Code Issues Alarm and Event Handling

3BSE042835-600 99

InteractionPar.InhXAct In Bool Same as InhXAct but controlled
from faceplate. Only introduced for
a selection of objects.

When declaring the data type for
InteractionPar, the InhXAct
component must be declared with
the attribute “retain”.

X Out Bool Indicates active condition X. This
output is enabled as long as
AEConfigX <> 0. Example: GTH.

XStat Out Bool Indicates active condition X. This
output can be controlled via
Enable.

XEnabled Out Bool Indicates that the XStat and XAct
parameters are enabled. This
parameter can be used when
additional actions should be
performed at Enable/Disable.

XAct Out Bool Indicates active condition X. This
output can be controlled via
Enable and Inhibit.

XActInh Out Bool Indicates that the XAct parameter
is inhibited, either from faceplate or
code. This parameter can be used
when additional actions are
wanted at Inhibit. Only introduced
for a selection of objects.

Table 13. Summary of Alarm and Event parameters (Continued)

Parameter Direction Data type Function

Alarm and Event Handling Section 6 Program Code Issues

100 3BSE042835-600

Figure 32. Alarm and event logic.

AlStateX Out Dint The alarm state for condition X.
Valid if AEConfigX = 1

EnableSupOut In Bool Default true. When false, out
parameter X is false when
XEnabled is false. This parameter
is earlier introduced for a selection
of objects and is kept for
compatible reasons only.

Table 13. Summary of Alarm and Event parameters (Continued)

Parameter Direction Data type Function

Section 6 Program Code Issues Program Stop Complication

3BSE042835-600 101

Source name

The source name parameter of the AlarmCondBasic instance shall not be connected
to a parameter. By doing so, the Name parameter of the closest alarm owner will be
used as source name. It is therefore important that all objects with alarms have a
Name parameter. This Name parameter shall be assigned an unique value to have
the alarm objects to work properly.

Enable and Disable alarm from alarm list vs. Faceplate

Disable from the faceplate means disabling of XStat and XAct as well as disabling
of alarm/event. This means that the disabled alarm will be visible in the alarm list
after a Disable from faceplate or code. The standard library objects should monitor
the Alarm State and disable the alarm if the user then tries to enable the alarm from
the alarm list. It is also possible to disable an active alarm from the alarm list. Doing
so will however not influence the XStat or XAct outputs.

NLS for alarm and event

The NLS translator for alarms is discussed in sub-section National Language
Support (NLS) on page 75.

The condition name for the alarms shall be NLS-treated. This is done by assigning
an NLS-string as default value of the CondNameX parameter.

The parameter Message of AlarmCondBasic shall be connected to a string variable,
called MessageAlarmCondition. The value of MessageAlarmCondition shall
describe what has happened. If an alarm limit exceeded, the value of the limit shall
be included. The value shall be NLS handled. Example:
||SL_Greater_than_{1}_{2}\5\Degrees

which gives the following result in English “Greater than 5 Degrees”. See National
Language Support (NLS) on page 75.

Program Stop Complication

Just before the running program is stopped during a new download all the
asynchronous procedures return -15 as error code (cErrProgramStopping, the
requested operation is rejected because application program shutdown is in
progress). This is a highly probable error code, which the programmer has to take

Power Failure Behavior Section 6 Program Code Issues

102 3BSE042835-600

into consideration, when constructing the code of a control module or Function
Block.

Three alternatives exist:

1. Accept the error code and return failure back to the caller.

2. Ignore the -15 error code and return success back to the caller.

3. Retry the asynchronous procedure when error code is -15 until success or
another error emerges.

Which one of the alternatives to choose depends on the application. Often the only
solution is to pass on the problem to the user in terms of an extra module parameter.
In this case, an integer in the parameter ErrorHandling should be introduced with
the above possibilities and a default value of 1.

Power Failure Behavior

Outputs shall be ramped when the application is restarted after a power failure and if
an OSP value has been used.

State algorithms and bumpless parameters changes

Some parameter changes in algorithms that hold a state might cause a “bump” in the
output if the update of parameters are not done with care. An example is change of
filter time or gain for a filter algorithm. To avoid such bumps, the following method
should be used.

The parameter values from the last scan is stored and used for the calculation for the
new state. The output is computed and the last thing that is done is that the state is
adjusted to the value that would have given the same output with the new
parameters. The pseudo code below exemplifies the method:

NewState := UpdateState(OldState, In, SampleTime,
OldParameters);
Out := CalculateOut(NewState);
OldState := UpdateStateInverse(Out, In, SampleTime,
NewParameters);
OldParameters := NewParameters

Section 6 Program Code Issues Range Check

3BSE042835-600 103

Range Check

Table 14. Example, Function Block Type

Name
Data
type

Attributes Direction
Initial
value

Description

ParError bool Retain Out Indicates parameter range error.

Table 15. Example, Function Block Type

Name
Data
type

Attributes Direction
Initial
value

Description

AEConfig dint Retain In 1 Config (0=None, 1=Alarm,
2=Event, 3=Event1,
4=Indication, Else Alarm +
ParError)

A real, integer, data type, or time input parameter may have a range. This means that
it may be required to have a relation (for example > or <) to one or several constants
or other parameters.

Generally, the object must have a predictable behavior for out-of-range input values.
One example can be to use the closest range border value for internal calculations.
What action that is most reasonable when out-of-range values are detected has to be
decided from case to case.

If any real, integer, or time input parameter is out-of-range a graphical indication
shall be visible in the faceplate and interaction window. In addition, a bool output
parameter ParError shall be set to true (see also sub-section ParError on page 37).

The parameter description shall state the range, the action for valid input values, and
the action for out-of-range values.

Exception: A ParError parameter (or other parameters) shall not be added to types
where the parameter interface is defined by IEC 61131-3, for example TOn.

Range Check Section 6 Program Code Issues

104 3BSE042835-600

Example of range test on AEConfig:

(* Parameter range test *)
ParError := false;
IF AEConfig < 0 or AEConfig > 4 THEN
 AEConfigInt := 1;
 ParError := true;
ELSE
 AEConfigInt := AEConfig;
END_IF;

After this, the variable AEConfigInt is used in the code and graphics since the input
parameter AEConfig can not be modified.

When an input parameter is used in the code, the range check shall be made there. If
the parameter is used in an internal FB, the range check shall be made there as well.
In the main object the ParError should be calculated as the sum error of the ParError
of the block itself (if any) and the ParError(s) of the sub function block(s).

Example:

Test of AEConfigInt, InteractionPar.AEFilterTime and InteractionPar.AEHysteresis
have been tested as described above.

AEClass is tested in the function block Level6Alg.

Level6Alg(AEFilterTime := InteractionPar.AEFilterTime,
 AEClass := AEClass,
 AEHysteresis := InteractionPar.AEHysteresis,
 AEConfig := AEConfigInt);
ParError := ParError or Level6Alg.ParError;

This principle may be used in all levels of function block calls.

Section 6 Program Code Issues Conditional Range Check

3BSE042835-600 105

Conditional Range Check

Table 16. Parameter interface for an example type with conditional range check and last good value

Name
Data
type

Attributes Direction
Initial
value

Description

MyPar dint Retain In 1 Config (<=0 = Event1,

1 = Event2,

2 = Event3,

Else Last good value + ParErr)

EnablePar
Error

bool Retain In false EDIT Enable par error
calculation for Non-SIL
applications.

ParError bool Retain Out Indicates parameter range
error.

If a conditional range check is applied, the execution time can be reduced in
Non-SIL applications.

In the example code, the parameter EnableParError is copied during the first scan
to a local variable EnParError for Non-SIL application, otherwise the local
variable will be true. If the range check finds an out-of-range value, the last good
value will be used.

if Init then
 Init := false;
 (* Force range checks if SIL application *)
 EnParError := EnableParError or GetApplicationSIL() <> 0;
 MyParInt:= MyLimit; (* Last good value *)
 ParErrorInt := false;
end_if;

if EnParError then
 (* Perform parameter range check each scan *)
 (* before assignment *)
 ParErrorInt := false;

Conditional Range Check Section 6 Program Code Issues

106 3BSE042835-600

 if MyPar > MyLimit then
 (* No assignment, use last good value *)
 ParErrorInt := true;
 else
 MyParInt := MyPar;
 end;

 (* More range checked assignments ... *)
else
 (* Assignment without range checks *)
 MyParInt := MyPar;
 (* More assignments ... *)
end_if;

Note that MyPar is copied to a local variable because it is not allowed to change IN
parameters.

Section 6 Program Code Issues Overflow handling

3BSE042835-600 107

Overflow handling

The object must have a predictable behavior when calculating output parameter
values. Situations like divide by zero and sqrt() of negative numbers shall be
prevented or handled in the code.

Example:

Create a function Y := (1/T)*G, where T and G are parameters to a function block.

Solution:

When T is too small, the calculation generates an overflow in the arithmetical
processing unit. To avoid this, the parameter T must be checked. As T is assumed to
be a time, only positive and not too small values are allowed.

Code:
IF T < Ts THEN
 Y := G / Ts;
ELSE
 Y := G / T;
END_IF;

Where Ts is the selected sample time for the running task.

The requirement is that the library object shall not give an overflow output value if
none of the input parameters have an overflow value.

SIL Mark Restrictions

Objects need to be restricted marked if any of the below is true:

• The object calls the functions that are not fully executed in the SM81x safety
module.

• The output data from an unsafe source is not secured with a safety layer.

This is only relevant for 800xA internal libraries.

To obtain the main functionality of the object in the SIL environment, the whole
object must be SIL Restricted.

If the object is set to SIL1-2 or SIL3, but the parameters are Non-SIL, then it is
possible to obtain partial functionality in the SIL environment.

SIL Mark Restrictions Section 6 Program Code Issues

108 3BSE042835-600

3BSE042835-600 109

Appendix A Names and Abbreviations

Suggested Names
The recommendations consist of the following:

• Recommended Names and Abbreviations on page 109 lists recommended
names and abbreviations for a number of common types and parameters.

• Standard Library Parameters on page 113 lists common parameters used in
standard libraries. These are included for reference, since it is necessary to
know about them when naming additional types and parameters when creating
self-defined types.

Recommended Names and Abbreviations

If you do not have a naming strategy for types and parameters, the below table offers
a good start.

Table 17. Names and recommended abbreviations of type and parameter names.

Full name Short name Remarks

Acknowledge Ack

Acknowledged Ack

Active Act

Activated Act

Alarm Al

Asynchronous Async

AutoDisabled AutoDis

Recommended Names and Abbreviations Appendix A Names and Abbreviations

110 3BSE042835-600

Automatic Auto

Boolean Bool

Busy Busy

Cascade Casc

Channel Chan

Command Cmd

Communication Comm

Condition Cond

Connect Conn

Connected Conn

Connection Conn

Control Ctrl

Cyclic Cyc

Decrement Decr

Delay Delay

Description Descr

Detection Dct

Deviation Dev

Device Dev

Disable Dis

Distribute Distr

Duration Dur

Elapsed Elap

Table 17. Names and recommended abbreviations of type and parameter names.

Full name Short name Remarks

Appendix A Names and Abbreviations Recommended Names and Abbreviations

3BSE042835-600 111

Enable En

Error Err

External Ext

Feed back FB

Feed forward FF

Fieldbus Foundation FF

Filter Filt

Force Force Do not abbreviate

Function block FB

Gain Scheduling GS

Hysteresis Hyst

In In Do not abbreviate

Integer Int

Inactive Inact

Increment Incr

Inhibit Inh

Interaction Iact

InteractionPar InteractionPar Do not abbreviate

Interlock Ilock

Limit Lim

Local Loc

Manual Man

Master M

Table 17. Names and recommended abbreviations of type and parameter names.

Full name Short name Remarks

Recommended Names and Abbreviations Appendix A Names and Abbreviations

112 3BSE042835-600

Memory Mem

Message Msg

Mode Mode Do not abbreviate

Negative Neg

Number Of NoOf

Object Obj

Occurrence Occ

Out Out Do not abbreviate

Panel Pan

Parameter Par

Periodic Periodic Do not abbreviate

Positive Pos

Preset value PV 61131-3 standard

Print Prt

Process value PV

Pulse Pulse

Ready Rdy

Reference Ref

Real Real

Relative Rel

Request Req

Reserve Rsv

Reset Rst

Table 17. Names and recommended abbreviations of type and parameter names.

Full name Short name Remarks

Appendix A Names and Abbreviations Standard Library Parameters

3BSE042835-600 113

Standard Library Parameters

The following list contains a number of important parameters that are used in the
standard libraries. Please note that there are additional parameters for many
Function Block- and Control Module types.

Select Sel

Setpoint Sp

Signal Sig

Simple Smp

Simulate Sim

Slave S

Source Src

Start Start Do not abbreviate

Status Stat

Stop Stop Do not abbreviate

String Str

Supervision Sup

Synchronous Sync

Support Sup In library names

Time T

Unacknowledged Unack

Update Upd

Value Val

Table 17. Names and recommended abbreviations of type and parameter names.

Full name Short name Remarks

Standard Library Parameters Appendix A Names and Abbreviations

114 3BSE042835-600

Table 18. Certain parameters and their descriptions used in standard libraries.

Parameter name Description

Name The name of the object. This name should appear in the
window title of all the operator windows. It should also appear
when the module is zoomed to layer 2. If the module has
graphical connections, the name should be presented
together with the node names.

Execute Requests the control module or the diagram type to execute.
The parameter is reset before next scan.

Req Request for execution

Status Status of the command set in Execute (M), (D), or Req (FB).
The status can be set several scans after the command was
set. 0 means that the module is pending, 1 means ready and
OK, <0 means error.

Warning True at a warning of unexpected operation. Status parameter
>1.

Error Indicates an error with True. Status parameter <0.

Ready Indicates that the command was executed successfully.

Done (FB) True when requested operation is performed successfully

NDR (FB) True when new data has been received on each call after
successful operation.

Enable Enables the execution of the object code while True.

Enabled Indicates that the function is activated. This is not affected by
error status or warning status.

Valid True when the output values are valid.

In, In1, In2, … Main inputs, if there are no other natural names.

Out, Out1, Out2, … Main outputs, if there are no other natural names.

Appendix A Names and Abbreviations Standard Library Parameters

3BSE042835-600 115

In addition, the following abbreviations are recognized:

InteractionPar A parameter of type ObjectNamePar. The components are all
the parameters that the operator can interact with via
interaction objects. Via this parameter, all operator
parameters are available in the surrounding program.

Period (FB) Time interval between consecutive operations.

RemoteSystem The address of a remote system.

Table 19. Object name suffixes.

Full name Short name Remark

ControlConnection CC Used as suffix on all modules that have a
parameter of the data type ControlConnection.
For example: PidCC.

Control Module M A control module type that has the same
functionality as an existing function block type
shall have the same name as that function block
type plus the suffix “M” (for Control Module
type). For Example:
AlarmCond – Function block type
AlarmCondM – Control module type

Diagram D A diagram type that has the same functionality
as an existing function block type or control
module type shall have the same name as that
function block type or control module plus the
suffix "D" (for Diagram type). For Example:

RemoteInput Control module type and
RemoteInputD Diagram type

Template Template Only for object types that the user must change
and rename before use. For example:
EquipProcedureTemplate

Table 18. Certain parameters and their descriptions used in standard libraries.

Standard Library Parameters Appendix A Names and Abbreviations

116 3BSE042835-600

3BSE042835-600 117

A
Access Level

Confirm 77
Read-Only 77

AEConfig 97
Area color 48
Aspect Object 72

B
basic icons 49
Bool 23
by_ref 28

C
CC 23
class 39
CMD 20
code block 91
cold retain 27
Command icons 50
condition name 39
constant 28
control module type

graphical connections 44
layers 43
visible 43
zoomable 43

control module type icons 49
Core 23
cWindowSizeFactor 66 to 67

D
D 23
Dimming 70
Dint 23

direction 38
Display Elements

Icon 74
Reduced Icon 74
Tag 74

E
error display 97
ErrorIcon 50

F
Function Block Diagram 20

G
graphical nodes 46

H
hidden 28, 75

I
IEC 61131-3 22
IEC 61131-5 22
Information windows 63
internal coordinate system 46

K
Keyword 92
keyword 32

L
Line color 48

M
M 23

INDEX

Index

118 3BSE042835-600

Index

118 3BSE042835-600

Maneuver icons 50
ManoeuvreIcon 65
MaxSize 44
Mode icons 50

N
Name Upload 33 to 34
NLS-strings 75
nosort 27

P
Project Constants 88
Protection 42

R
range 37
Real 23
Reset Shape 46
retain 27

S
Scope

Private 88
Public 88

severity 39
Source Name 34
string literal 90
structured data type 36
Structured Text 85

T
Template 23

V
value default 31
Visibility 47

W
Write Permission

Administrate 76
Operate 76
Tune 76

Power and productivity
for a better worldTM

Contact us

Copyright© 2003-2014 ABB.
All rights reserved.

3B
S

E
04

28
35

-6
00www.abb.com/800xA

www.abb.com/controlsystems

	Library Object Style Guide
	TABLE OF CONTENTS
	About This User Manual
	General
	Document Conventions
	Warning, Caution, Information, and Tip Icons
	Terminology
	Related Documentation

	Section 1 Libraries
	Introduction
	Purpose

	Library Categories
	Standard Libraries
	User Defined Libraries
	Object Libraries

	Library Dependencies
	Connected Libraries
	Split Libraries
	Support Libraries

	Naming Convention

	Section 2 Types
	Naming
	Object Types
	Compound Words and Abbreviations
	Suffixes
	Name Space

	Section 3 Parameter Interface
	Naming Convention
	Compound Words and Abbreviations

	Parameter Properties
	Data Type
	Attributes
	Parameter for Control Modules and Diagrams
	Parameter for Function Blocks
	FD Port
	Initial value
	Description
	Type Description Keyword
	Range Checking Description

	Parameters with Special Purposes
	Name
	Description
	InteractionPar
	ParError
	Connections
	Main Signal Flow
	Point-to-Point Connection using ControlConnection Data Type
	Point-to-Point Connection Using Reverse Attribute
	Handling Communication Failure using ISP Value

	Parameters for Alarm Handling
	Monitoring Continuous Execution

	Section 4 Engineering Interface
	General
	Protection Attribute on Types

	Template Design
	Control Module Design
	Graphical Layers
	Grid and Coordinate System
	Reshaping Issues
	Graphical Connection Nodes

	Layers and Interaction Windows
	Control modules in layer 2
	Interaction object in layer 1
	Texts

	Icons
	Icons in Control Software for AC 800M
	The Difference between basic Icons and Control Module Type Icons
	Control Module Types for Control Module Icons
	Size of the ErrorIcon
	Icons in IconLib

	Function Block Design
	Parameter Names
	Function Block Example

	Diagram Design
	Data Flow Order
	Execution order
	Reverse and Display value attribute on data types in diagrams
	Reverse attribute on data types in Diagram types
	Variable and Parameter

	Interaction Windows in Online Mode
	Introduction
	Interaction Windows
	Information Windows
	When to use Interaction Windows
	Window Appearance
	Design
	Window layout

	Interaction principles
	Synchronization of data write
	Dimming of objects

	Section 5 Operator Interface
	Introduction
	Operator Workplace Interaction
	Design
	Faceplates
	Display Elements
	National Language Support (NLS)
	Interface between Control Builder and Operator Workplace
	Permissions for Variables that are not Hidden

	Interaction principles
	Use of buttons and check boxes in faceplates

	SIL considerations
	Access Level
	Support for Confirm Operation Dialog
	Graphical Indication of ParError
	The Operator Workplace Graphics
	The CB Graphics

	Section 6 Program Code Issues
	Program Code
	Descriptions
	Variables and Project Constants
	Project Constants

	Object Sub-Structures
	Protection and Scope
	Re-use of Code
	Control Module Types
	Code Sorting and Algebraic Loops

	Function Block Types
	Diagram Types
	Data Types
	Templates
	Task Considerations
	Parameter Dependency on Tasks and Controllers
	Calls to Asynchronous Functions

	Special functions
	Handling of Input and Output Values
	Error Handling
	Alarm and Event Handling
	Source name
	Enable and Disable alarm from alarm list vs. Faceplate
	NLS for alarm and event

	Program Stop Complication
	Power Failure Behavior
	State algorithms and bumpless parameters changes
	Range Check
	Conditional Range Check
	Overflow handling
	SIL Mark Restrictions

	Appendix A Names and Abbreviations
	Suggested Names
	Recommended Names and Abbreviations
	Standard Library Parameters

	INDEX

