EEEE

' B - m \ [
e e=— i — : J| IIIHIIIIIID
s N e i =7 =i
NS LA, , = | == ./_'(:/ L\I*J
- LI 3 N | S E—
—_ Ta J:] I
i A EAY = A 0 =
AT | R | NI a— — =
e ““N""V"W\‘rw« /] '_,—J N 1 N I\Vv ‘ ki
L _'_/ i jg] | —H |[] |]————r—F—"1—— -
[= r % N
T T T) “/'\I\ o \ AR A ZB
= - \ / \ / AN <
; 1 LA =l LI]

System 800xA Control

AC 800M
Configuration

System Version 6.0

System 800xA Control

AC 800M
Configuration

System Version 6.0

NOTICE

This document contains information about one or more ABB products and may include a description
of or a reference to one or more standards that may be generally relevant to the ABB products. The
presence of any such description of a standard or reference to a standard is not a representation that
all of the ABB products referenced in this document support all of the features of the described or ref-
erenced standard. In order to determine the specific features supported by a particular ABB product,
the reader should consult the product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intellectual property
in the ABB products described in this document.

The information in this document is subject to change without notice and should not be construed as
a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

Products described or referenced in this document are designed to be connected, and to communicate
information and data via a secure network. It is the sole responsibility of the system/product owner to
provide and continuously ensure a secure connection between the product and the system network
and/or any other networks that may be connected.

The system/product owners must establish and maintain appropriate measures, including, but not lim-
ited to, the installation of firewalls, application of authentication measures, encryption of data, installa-
tion of antivirus programs, and so on, to protect the system, its products and networks, against security
breaches, unauthorized access, interference, intrusion, leakage, and/or theft of data or information.

ABB verifies the function of released products and updates. However system/product owners are ulti-
mately responsible to ensure that any system update (including but not limited to code changes, con-
figuration file changes, third-party software updates or patches, hardware change out, and so on) is
compatible with the security measures implemented. The system/product owners must verify that the
system and associated products function as expected in the environment they are deployed.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any
nature or kind arising from the use of this document, nor shall ABB be liable for incidental or conse-
quential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from
ABB, and the contents thereof must not be imparted to a third party nor used for any unauthorized pur-
pose.

The software or hardware described in this document is furnished under a license and may be used,
copied, or disclosed only in accordance with the terms of such license. This product meets the require-
ments specified in EMC Directive 2004/108/EC and in Low Voltage Directive 2006/95/EC.

TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2003-2016 by ABB.
All rights reserved.

Release: April 2016
Document number: 3BSE035980-600 A

TABLE OF CONTENTS

About This User Manual

(€15 1 1<) 1 USRSt 15
DoCUMENE CONVENMLIONS ..evvieriiieiieriieerieeniteeteestesteesteessteesseesiteesseessessseesssessseesssesssesssnens 16

FEature PaCKccvieiieiii ettt ettt s b e ae e 16
Warning, Caution, Information, and Tip ICONS.......ccccceevieriiiiniinieniieieeieeeeeeeee e 17
TOIMUINOLOZY ... veteeetetiete ettt ettt ettt sttt b et e s bt et et e s e saeetesaeenaesaeeneesbeensesbeeneenseans 18
Related DOCUMENTALION ...c..vieiieeiiiiienitieiee sttt sttt et e st ebeesiteebeenbeesabeeaaesanees 18

Section 1 - Basic Functions and Components

INETOAUCTION ..ottt sttt ettt et s sae et sbeeanesieean 19
Control Project TEemMPIAtesc.cceeierieienieierie ettt s eaene 21
CONTOL PIOJECES 1.uvtiniieeiiieiie ettt ettt ettt ettt be e st e s be e saa e et e enbaessbeesbeeseseensaesanean 22
Program Organization Units, POUc.coocoiiiiiiiiiieeese e 23
Entities and Reservation (Multi-User Engineering)ccocceeecvevieevieenieinieeneenieereennnnn 24
ENEES ettt ettt ettt et sae et bt et s b et be et ene 24
RESEIVALION ..c..eiiiiieiiiiieicicece ettt st st 25
ENVITONIMEIES ... ittt ettt sttt ettt esae et saeeaesaeeeesbeentesbeaneenseans 27
Engineering and Production Environments............cccceveeriieenieniiennieenieeneeneennes 27
Remove Environment Changescoceeverieiecienieininienenreseneeseeseeeeeeeeneenene 29
System FIrmware FUNCLIONScocuiiiiiiiieiieeiieite ettt sttt ettt 30
HATAWATE ...ttt e et et 32
Standard System Libraries with Hardware............cccccoveiirviieniiniieinieneeeeeeen 33
Customized Hardware TYPES.......ccceeveereeriereeienieeiesie ettt 35
Configuring the COntroller...........cccuivviierieeiiieniie ittt 36
Enabling Web SerVer........coioiiiiiiiiieiiiee ettt 40
Basic HArAWArec..coeeiiniiiiiniiiienicctcieetcteetccetee ettt 41

3BSE035980-600 A 5

Table of Contents

Basic Library for AppliCationscc.eeiereeierieeieieei ettt ettt 42
Application Types and INSLANCESccuevruieriieriiriiierie ettt ettt be e e e ens 43
Types and INStances - CONCEPL.......ccueruieruerieiiriieienieeie sttt 44
Define a Type in the EdItOr......cccceeciiiiiiiiiiiiiiieeitec et 45
Control Module Types, Function Block Types, and Diagram Types................... 54
TYPES 1N APPIICALIONS ..eeuevieiiieiieriieitieeieeite ettt et ebe e beesteebeesareenseenaee s 56
Types in User defined Libraryccccoooeeoieiieienieiiniee e 57
Modify COMPIEX TYPES ..eeuveerrririieiieiiieteeie ettt et eteeiee st et e st enbeesinesnee 58
Diagram and Diagram TYPESccceuevvereeiriririnenenenieieieeeeeeee e 59
Decisions When Creating TYPESeevveerveerieiieenienieeieenteeieesieesieenieesneesee s 64
Create and Connect INSLANCESccc.eerieeriiriiiiiirierieeeete et 66
Function BIock EXECULION.cc..coeiiiriiiiiniiiiiiieicneciciece et 71
Control Module EXECULION.cc.ceciiriieiireeie it 73
Diagram EXECULIONccouviviieiiiiiiieiieeie ettt sttt sttt e et esbeesane e 74
Single Control MOAUIEScoieriiiiirieiieieseee ettt 76
FD POTt ettt sttt e 78
ASPECE INSLANICES .. .veenveeieerteeieeteeite sttt et et e et et e bt e te s bt este bt eneesbeenteeseentesaeeneesaeeneas 80
Variables and Parametersc..coocereerieririenieniinieiescete ettt sttt 81
Variable and Parameter CONCEPL.........oouerieriirieririerie et 83
Variablesooooiiiiiiiiicc e 84
Variable ENEIY .o..oooeieiiieeeeee et 85
Specific INTtial VAIUEScovviiiiiiiieiieiieeeeieerte ettt s 94
External Variablescoccoiiiieiiiieieeiee ettt 96
ACCeSS Variablesocuiviiiiiiiiiiiiiii e 97
Communication between Applications Using Access Variablesc..cccceveuee. 99
Communication in an Application Using Global Variables.........c..ccccceeeceenenne 100
Communication Variables...........oeceeriirierierienereee e 101
Control the Execution of Individual ObjJectsccecueevuiercerrciienienieenieeriesiens 113
Link Variables in Dia@ramsccocueiieiierinieninient e 116
Project CONSLANTSc.eeviiriieiieeieeite sttt ettt st e et sbeesabeensee s 116
I/O Addressing GUIAENES.........cecuerueeiieriieierieeierieee et 121
Connecting Variables to I/O Channels.........c.coocueeeuirniiniennienieeieenee e 122

6 3BSE035980-600 A

Table of Contents

Extensible Parameters in Function BlOCKS...........ceceiiiiininieniieeecee 127
Keywords for Parameter DesCriptions...........cecveerueerieenieeniiesieeneeniesieesresveenne 128
Real value in AC 800Mcoouiiiiiiiieiietieie ettt 129
Property PermiSSiONS.cccveviiiriierieeiieiie sttt ettt st seee e 133
Property Attribute OVeITide.cocevuieiiriierienieieecee e 134
Library Mana@emeENtcccueeruverrueerieeiienieeeieesitesieesteesseesteesseesseessseesseesssessseesssessseenes 135
CONNECE LIDIATIES ..cuvieieniieiieiieiiesie ettt ettt 136
IMpPOTt/EXPOrt LADTATIES ..cc.veevieiiieiieiieeieesiteeteete ettt e 141
Create LIDIATICS ...c..eouieiieeieiieiiese ettt ettt ettt st e b et ae 141
LIDTATY STALES ...eevuvieiieiiieiieeite ettt ettt sttt st ebe e sbeeebeebeesateebeesbbeenbeesaeenns 142
LiDIary VEISIONScc..ivuieiiiiieiiiiieie ettt ettt ettt ettt e e e 143
Library Password ProteCtioncocceeruervieenieniiniiienieeieeieeseeeieesieesveeneeenes 146
Add Types to Libraries Used in Applicationscceceeveerienienenienienieniennene 147
Add Customized Hardware Types to Library........ccocceevveeviencienneeniiensieenieeieenne 150
Device Import Wizardcoeeviiieriiieieeeeeie et 152
Additional Files for Libraries with Hardwarec.ccoccoceniniencnicnencnncncnn. 153
Delete Hardware TYPEScevuieuiererieiieiieieeeeeie ettt 156
Type Usage for Hardware TYPEScocververviieniieniieiienieeieeieeste et sve e 156
Hide and Protect Control Module Types, Function Block Types, Diagram Types, and Data
TIPS ettt ettt ettt sttt st ettt b e st e b e e 158
Protect a Self-Defined TYPEcooveeviiiierieeiienieeetete ettt 159
Protect MySupervision Type Example...........ccoocovviiniiiiniiiiiiieeeeeee 161
TASK CONLIOL ..ottt ettt et sae e 165
TASK CONNECTIONSvineieneieiieniieitete et ette e tce et et et eesteeetebe et e steeseenbeeaeenaeene 165
TaSK EXECULION «..cvviuiiriiiiiiiiiieiesie ettt sttt st 169
TaSK PIIOTILY «.everuititiieicicieee ettt s s 169
INEEIrVAl TIME ..oouviiiiiiiiiicec ettt st sae et 172
[0 -7 RSP SRPS 173
EXECUtION TIME ..ottt ettt 178
OVverrun and LAENCYoocueiriiriiiiiiiieeeeette ettt sttt 178
OVEITUN SUPETVISION ..uvviiniieiiieiieniieeieeiteeteette st e et esteestesabeeseaesseenbeesaseeseenns 179
Latency SUPETVISIONccuieiiiriieiiiieeieitiete ettt ettt sttt sb et 181

3BSE035980-600 A 7

Table of Contents

TASK ADOITION. ...ttt ittt ettt ettt et et sae et st ebesb et esbee e eaeeneeene 183
L0ad BalanCingcoocveeiieriiiiienieeieesiieeeeeite sttt sttt ettt st e 184
Non-Cyclic Execution in Debug Mode..........cccoecieiieiininienieeeeee e 186
TASK ANALYSIS 1ueveineieiieeiieie ettt ettt st s e et e st e et e e st e sabe e bt e sabeesbeenabeenbaenanesane 187
Exploring the INterfaceccooeiieiiiieiirieieeet e 188
Modifying Task EXecution Timecceceevviieriienieiiieenienieeiie e eeeeien 192
Error and Warning CategOTies.........cccevveuteuirererenienieniereeeeeeeneniesressessessennennens 192
SECUTILY .tteiieeiieete ettt ettt sttt s bttt e st e st estt e e beesbeesabeenbeesabeenseesatesnbeenseesaseensaenanes 195
Authentication at Downloadcccoeieiiiiiiinieieeecee e 196
Confirmed Onling WIItecc.covueviiriininienineeneneceseereeeetese et 197
Search and NavVIZationcccecviriirienienierieieieteteese sttt sttt et eveere e s saene e 198
Search and Navigation Dialogcocveveeriiiiiinienieeieeeeeee e 198
SEArCh SEEHNES . .cveveiieiieiiiiiiirietet ettt s s 199
Symbol and Definitioncccueerirriiiiienieeieeie et 201
RETEICIICES ... ettt 203
Navigation t0 EAItOTSeeviiiriiriiienieeiiertesie ettt 208
Search and Navigation SEttingsccceecuereerierieiienieerie et 208
SEATCH DAtcouiiiiiiiieicicee et 212
REPOTES ettt st 212
Analog Input and Output Signal Handling..........cecceevierieniiiinienieniienieeieeieeseeeie e 213
BacKup MEIac.eeuiiiieiiieee ettt bttt 216
CATA TYPES eveenveeeireeieeiie ettt ettt e et e st e st et tesbeesbeesateebeesatesaseeatesaseeseesaseens 217
Adding CF Card or SD Card to Hardware..............ccoecereererienenieeeieeeeeae 218
Dump of Post Mortem Memory Image..........cocceevierrieeniencieenienieeeesieeieeeeeen 219
Saving Cold Retain Values on Files.........coccoooiriiniiiiiiinicieeeeeeeeee e 222
Downloading the Application to Removable Media...........cccceevveruerniieneennenne 224
Configuration Load..........cocivieiiiiiiiiee e 224
Upgrading Controller Firmware using Backup Mediacccovvveveeenieneennnnn. 225
Controller Restart Modes and Backup Media Usageccceeveeveeeenenccenenne. 231
Storing Related FIles.......oocuiiiiiiiiiiieiieeieec ettt 232
Restoring Formatted CF Cards to Original Size...........cccoeveviniininienineee. 232
Remove Files Completely from a CompactFlash Cardccoceeeeeniieiennnnn. 233

8 3BSE035980-600 A

Table of Contents

COMPILET SWILCRES.eueiieieieiiee ettt st et 233
SEUINZS cveeeiieriieetterte et ettt e e et este e st e s bt e sbeesbeesabeenseesaseenbeesasesnbaesasesnseanes 233
REPOTES ..ttt ettt et sttt st e sbe e e 237
DIfference RePOTTt.......cccuiiiiiriiiiierieeie ettt ettt st ettt 237
Difference Report VIEWETcoceviiiiiiiieiieiieieeieeie sttt 244
SoUrce COAe REPOTL ..coueeiiiiiiiiiiiieiiieeieeite sttt ettt ettt e sbbeebeesbeeens 245
Reports Generated at Downloadccceeoeeieninienieieneeeeee e 248
Portability VerifiCationcccoveeeieriiienienieeiie sttt sttt 251
Performance Management..........ceeuieueerierierienieieeiiete ettt e et e e bt ae b eee s enes 251
Project DOCUMENTALIONc..eiiiieriiiiiieriieeie ettt sttt et e s aaesae e e 253
ODbJECtS AN TYPES -ecuveeieiieiieiieiieie ettt ettt ettt et e st et et e saeeneeees 255
Editor TtemSoviiiiiiiiiicicicee e 255
USEA TYPES ettt ettt ettt ettt et ettt et s e nb e sabe e b e e 256

Section 2 - Alarm and Event Handling

INETOAUCTION ..ottt ettt et ettt et nae et nbe et 257
Alarms and BVENLScooouiiiiiiiiiiiiieieeteee ettt 258
Alarm and Event LiDrary.........coocooceiviiiiiiniininiececteeeteceeeeetesieeeee 259
Process Alarm and Event Generation..............ceceerieeriieneeniieeniienieeieeneesieesieeseesseeenns 259
Process Alarms and EVENLScoeevieriirieniiiiniiniencetesceeseee e 260
Detection of SImple EVENts.........c.ccooiiiiiiniiiiinieiinccccceneceseeree e 269
Built-in Alarm and Event Handling in Other Libraries.........c..cocceeevienennienneene. 269
External Time Stamps (S800 I/O)cocueeviiriiiiiiiiieiieeeeeeeeeeeee e 274
External Time Stamps IEC 61850.........ccoeiiiiirieiinieeeeeeseeeeee e 274
External Time Stamps (PROFINET IO)ccccccveviiviiiiniiinieeienieeieeieeeieeieee 275
External Time Stamps (INSUM)....cccoiuiiiiiiiiieeeeee et 276
Choose Alarm Handling Method for INSUM Alarms.........ccocceevenevevenieeceennenne. 281
System Alarm and Event Generationccecceveeuerieiienieeienieeie e eeenie e e sieeneens 282
Controller Generated System Alarms and System Simple Events..................... 283
User Generated System AlAImScocueeueerieriiienienieeniienienteesee et 285
Handling Alarms and EVENLSc..coecuiiiieriiiriieniecieenteeie ettt st 285
SIMPIE EVENLS....cuiiiiiiieiieiieiieiet ettt ettt et 286
System Alarms and EVENLS.......ccoeviiriiriieiiieiieieeieeieesie ettt 286

3BSE035980-600 A 9

Table of Contents

TIME STAMPS ...eeneienieii ettt ettt ettt et e et estenbe st esbees e beeseesbeeseeneeens 286
Alarm and Event CommUNICAtIONc..crerrierieieninienteetenteeee ettt sieenee e 289
SUDSCIIPLIONS ...ttt ettt st s s 289
Configuration of OPC AE Communication — OVerviewcecceceeeerueneennenne. 289
BUFfer QUEUESveeiieieiiciiecie ettt ettt st te e st be e aaesveessaeenveens 291
Buffer Configuration..........coocuieiierieriiienieeieeiieeeecee et 292
Li0CAL PIINEEIS ...cueeieieeiieie ettt ettt ettt ettt et beeee et eae 293
Print FOIMALc.ooiiiiiiiiiieietee ettt 293
Sending an Alarm to the AppliCatioNcceceeerererienienienieieincne e 295
Third Party OPC CHENLSeevuieriieiieiieeieeniie et sttt sie et sreeseesanesasees 296
Translation — NLS Handling of Strings........ccccocverineninineinnieieincnenesceeeenene 296
AL EXAMPIES....eiiiiiiieiieiieiieesteeie ettt ettt ettt ettt e be e st e enbeeaeas 297
AlarmSimple_M EXampPIeccccoerieriiniinieieiiieteieene e 298
Alarm and Event Aspect Example (AlarmSimple_M)cccccevvevviiniincrennenn. 303
Alarm Owner EXamPLes.......cooveviiiiiiiiiiniiiiienteeeeeeeeeee et 304
Condition State EXaAMPIEcccueevieriiiiiieiieeiieiieeieeete ettt 308
Inhibit EXAMPIE......oouiiiiiiiiiiieee e s 310
Simple Event EXamplescocviviiiiiiiniiiiieiiiiiieeterte ettt 312
Alarm and Event FUNCHIONScoouiiiriiiieieiceeeeteee e 316
SYStEM DIaZNOSTICSeevieiieeiierieeieerte ettt ettt site sttt e be et e sanesaseens 316
Acknowledgement Rules — State Diagrams............ceccevveienerienenienenieneeeene 317
AL SREIVING .evviiniieiiieie ettt sttt ettt st e esateenbeesaneeaees 321

Section 3 - Communication

INETOAUCTION ...ttt st sttt et sb et sae e e 323
Communication LADIaries.........c.eeuerieiiriieiere ettt 324
COMLI Communication Library.........cccccceeveevieeneenieiniieneesieeneesieeieesee e 324
Foundation FIELDBUS HSE Communication Libraryccccccoceeeeninniennene 324
INSUM Communication Libraryccccceeeveerieeneenieiiiieniesieeneesieesiee e 328
MB300 Communication LiDraryccccecceeierinienioieneeieneeeeeeeee e 332
MMS Communication LiDIarycccoecueeviieiieniieenieiieeieesieeieesiesieeseesneens 333
MODBUS RTU Communication Libraryccecceeeeienerienenieneniesesceenne 334
MODBUS TCP Communication Libraryccecceeveerieeneeniinneeniesieereesneens 334

10 3BSE035980-600 A

Table of Contents

Modem Communication Library...........cccceeeeririereniiene e 334
Siemens S3964 Communication Libraryccecceevvieevieerieniiieneeniieeniiesieeieene 334
SattBus Communication Library..........ccceeeririenenienenieiesieeeeeeeseeee e 335
MTM Communication LADTarYcccceevieeiiieniieniinieenieeieeite e eiee e 335
Serial Communication Library...........ccooceeoeriereieeienieeeeeecee e 336
TCP and UDP Communication Librariescocceecerveenenieneneeneneeniencennenne 338
Generic IO Communication Libraryc.cccececvvcrveninieneneneneneeenene e 339
SUPPOTLEA PTrOtOCOIS.viiiieiiiiiiieeieerieete ettt ettt ettt e st e e aeesaneeaees 340
(070) 118 4] AN A7) QPP 341
Network Redundancycoc.eoieiiieniiiiienieniterieesee ettt 341
Statistics and Information on CoOmMMUNICAION........ceeevveeriierieerieerieeieerreeeeenns 342
Variable COMMUNICALIONc.eeuiiriieiiniieiiiniiete ettt sttt et et saeeeesaeenaenaeen 343
ACCESS VATTADIES.....c.uvieiiiieiiciieiie ettt ettt et e et eeae et e s tbeeaeebaeenbeenbee e 343
Communication Variablescocceveririeniriiininienceeneeeneereseerese et 343
21 4 72N (6 | OSSR 345
Reading/Sending Data.........cocueevieiiiiniienieiiiesieeiee ettt st st e 348
Connection MEthOScueeeuiiiiieriieiieeieeeteete et e ete e e saeere e aeesaeestaessseesee e 350
CommUNICAION CONCEPLS ..eeuvvienreereieriieriteeieeitesteeteesteestesteesaeeseesbeessessseenes 352
Fieldbus COMMUNICALION.......cccueevieriieeieetiesteeieeseeeteesteesbeesteesssessbeesssesnseesseesseenseens 355
HART COMMUNICALION......ouertieiiniiitiniietinttetenteetenteete ettt et st eetesaeeeesaessnensesenennens 358
SIL Certified COMMUNICALIONeecuvieiieeeieeiiesiieeteesteeeteeteesteeeaeesseesveeseesseessseesseesssens 358
SIL Communication Using IAC..........ccecuiiiiiniiiniiinieeieeie sttt 359
SIL Communication using MMSCommLib..........ccccceiiriininiiiinieeeeeeee, 362

Section 4 - Online Functions

INEFOAUCTION ..ottt ettt st ettt et b e ettt e b et e sae et e sbeeaeas 367
ONINE BAItOrS.....ioveiiiiiiiieiiicierieteet ettt ettt sttt st 368
Diagram Editor in Test Mode and Online Mode..........cccoceeieierieninienieiee 370
Dynamic Display of I/O Channels and FOrcingcocceevierviienieniinieenienieenieseeenne 372
Forcing I/O Channels in SIL Applications.........ccceceereeeerireenenieienieeieeiceeene 374
Scaling ANalog STZNALS.......ccoiiriuiiiieiieeie ettt ettt ettt e e esabesbeesaaeeaes 375
SUpervising Unit STATUScccueruieiiirieiereeiere ettt ettt see et st eesbeeneesaens 375
Find Out What is Wrong by Using HWStatuscccevvevieniiiinieniienieenieeieene 376

3BSE035980-600 A 11

Table of Contents

ATTUNIESTATUS ..ottt ettt ettt ettt et et e st enbe st esbeseeebeeneebeeseeneeens 377
Binary Chanmnels.........cooieviieiiiniieiieieeieeee ettt e 378
Supervising Communication Variable Status..........cccceceevieirerereneneneneeeeeeeeenennene 379
Supervising Communication Variable Using: Status Notation..............cecueeuee. 379
Supervising Communication Variable Using GetCVStatus...........cccceevuereeeenne. 380
Understanding the Complete Status Codecoecveeriiriernieenieeiieenee e 383
Status INAICATIONSeevireieieitieieei ettt ettt et eae et s et e stesaeeneesaean 386
Acknowledge Errors and Warningscceeceeveeviernieenieesieenieeieeneesveeseeenneens 387
TASKS ettt et st e sb et be et eane 387
INteraction WINAOWSc..cocuiriiriiiienenieienteteeieete ettt sttt 388
Status and Error MESSAZEScocueiuiiiiiiiiiiiiiei et 390
Search and Navigation in Online and Test Mode...........coocvevcieinieniiirnienieeneenie e, 391
Project DOCUMENTAtIONc.cotririrtiieniestcecteteitett ettt ettt sa b nene 395

Section 5 - Maintenance and Trouble-Shooting

INEFOAUCHION ..ottt eb e s 397
Running Control Builder on Terminal SErver...........coccoveevieienieniinienieeeneeeeneeeeen 398
Characteristics of Control Builder as Terminal Server-..........ccccoccoeevecveeeenncnne. 398
Backup and RESTOTE........c.coieriiiieiiiieiiieeeccteeeee ettt s 401
INtrOAUCHION.......coviiiiiiiiiieet e s 401
Files for Separate BacKupccccecerieiinieiiiiiiiiiicicieicc e 402
Remove and Add FSD Server Flescccocoivinininininiiiiiiieiceeeeeseeee 402
Compiler Output File Helpercccooieviniiiiniiiiiiiiiceceeeeeeeee e 402
IMIGLALION ...ttt ettt ettt b e s bt st b e a et et ettt et sae b sbesaen 409
Migration from 800xA to Compact Control Builder...........cccccevvvevceeniiniennnnn. 409
Migration from Compact Control Builder to 800XAcccceevererienerienieeneene 411
IMPOTt ANd EXPOTT ..ceviiiiiiiiiiiiecit ettt ettt et et et e s e e see 413
INEEOAUCTION ...ttt ettt ettt ettt eae et e e e 413
EXPOTt @ LIDTATY .couvviiiiieiiecieeieeieeie sttt ettt ettt st e 413
Export an Application/Controllerccceveeeeririenieieneeiese st 415
Import an Application/CONtIOLIETeevveerieeriiiriierie et 415
Import and EXport AIErNatives..........ceeeruerieriereeieie ettt 416
Applying Cold Retain Values when Importing Applicationscc.cceceeceeneenne. 417

12

3BSE035980-600 A

Table of Contents

About Library Import/EXPOrt........ccceeiieiieieniieieieeiesie et 418
Detailed Difference Report During Importccceeecveevieeieeniieniieenienieeieeieens 419
Start Values ANalySercccooiiiiiiiiiiiiiiiiiieceeee e 419
Controller CONFIGUIATIONccueeeieiriierieeieenie ettt ettt et beeseeesbeesbeesbeenaeesane 422
Controller Settings in Non-High Integrity Controllersccccoeoeeveneeniennenne. 424
Controller Settings in High Integrity Controllers...........ccecceeveervieeneeniersieeneenns 427
Error Handler Log Entries........cccoociiiiieieiiesieeieieecee e 430
ONINE UPZLAAE ..ottt ettt sttt sttt et sttt e be et e sabeesaeesnteenbaesaneentes 431
Plan for Online Upgrade already at Project Design Phase..........ccccceceveeenne 431
Why You Need to Read this First.........cceeceeviiniiniiiiniiiieeienieeceeceeeee 433
Restrictions for Online Upgradeccceveeiirieiiiniienieee e 434
Preliminary Actions for Online Upgradecoceeveerieeneenieenieeneenieeieenieens 435
Online Uprade ProCESScc.ccveeeuiriririininienieteietetetee ettt ene e 439
Running Online UPZradeccecveeviiiiienieniienieenieeieesie ettt eveeniee e eeee e 444
Solving an Interrupted Online Upgradecccceouevueeieienieninieeeeee e 445
TTOUDIE-SNOOTINZeeuveeiieeiiieniie ettt ettt sttt ettt et e sabe e bt e sebeebeesabeebeesasesnbaenes 446
(€531 13 2 USSR 446
LLOZ FILES ettt ettt ettt sttt sttt ettt e b e 447
Crash Dumps for Analysis and Fault-Localization..............ccccceeveveeienieeceennnnne. 467
Remote Systems INfOrmation...........cecueevuiercieriiienieniieniieeie ettt 468
Diagnostics for Communication Variables............cccoceeeereerienernenenienieeeeeene 471
ANALYSIS TOOLS ..eiiiieiiieiteiieete ettt ettt et sttt e s e e beesbeesbeebee e 477
SyStem DIa@nOSHICS «....ceververriieieieieiirierieetetereteeet ettt sttt 479
Trouble-Shooting Error SYyMPtOmScceveviieriierieeiienieeieeiee e eie e e 485
Common Reason for Shut-Down AC 800M HI Controller.............ccccevueeeeennenne 488
COoNNECiON tO ASPECT SETVET ...cuvieeeiieieeiieeiteiieereeite st et esitesbeestesebeesiaeeareens 492
EITOr REPOITS ... 493

Appendix A - Array, Queue and Conversion Examples

ATTAYS ..t et s 495
SearchStrucCtCOMPONENL.......c.cevieriierieeiienieeteesteesbeesteesteebeesaeebeesbeesseesseenns 497
TNSETTATTAY ..ottt sttt sttt st e e 501
SEATCHATTAYveeiuieeiieite ettt ettt ettt et et e st et e sabeebeesibeeseesaeesnbeesanesane 502

3BSE035980-600 A 13

Table of Contents

QUEBUIES ...ttt ettt e ettt e e e ettt e e e e e e tate e e e eeabtaeeeeeensaaeeeeeensbasaeeeaassbseeeeaanrreeaeaanns 506
COoNVersion FUNCHONSc.ceviiiiierieiie ettt ettt st sae e st enbeesaees 510
DINITOBCDeviiiiiieetee ettt ettt ettt v e e s aae e beessbeesbeessbeensaeneeas 510
BODTODINE......eeiieiiieiieeieete ettt ettt ettt et e st s beesaaesaseesaeesaseens 511
ASCIL ettt ettt et e e et e b e ebe e ae e e baennaeenteas 512
ASCIL CONVETSION ..c.uvienvieiieeiierteeieeste et esieesteesteesieesabeesseesaseesseesssesseesssessseens 514

Appendix B - System Alarms and Events

GEINETAL ...ttt ettt et st et e st st be e st e bt sat e et e e i 521
OPC Server — SOFTWATIEcccuiiiiieriieiieeitieeeeeiee st e ere et e sbeeteesteeaeessaesbeesseessseenseensnes 522
OPC Server — SUDSCIIPLIONcocuerieiiriieieiieienieeeene ettt e 524
CONTOIIET — SOTEWATEeeuvieeeiieiieeiieeieerte et etee e ettt e e be et esteebeesseesbeeseessseensaeneas 526
Controller — HardWare.cocueirieiiiiiiiieeieere ettt sttt s 558
Alarms and Events Common for all UnitS........cccecceevverieerieenieeiieeeenieeeeeieens 560
Unit Specific Alarm and EVeNts.........cc.cccevirviniiiiiiiniininicieeceeeceeseeee e 564
INDEX
TNETOAUCTION ..ttt ettt st et sttt e bt e st ebaesaees 577
REVISION HISTOIYciuiiiiiiiiiiieiietiees ettt ettt et 577
Updates in Revision INdeX A.......ccocuiiiiiiiiiiiiiiiiieieeecnteeeeee ettt 577

14

3BSE035980-600 A

General

®

About This User Manual

Any security measures described in this User Manual, for example, for user
access, password security, network security, firewalls, virus protection, etc.,
represent possible steps that a user of an 800xA System may want to consider
based on a risk assessment for a particular application and installation. This risk
assessment, as well as the proper implementation, configuration, installation,
operation, administration, and maintenance of all relevant security related
equipment, software, and procedures, are the responsibility of the user of the
800xA System.

This user manual describes how to use the basic 800xA programming and
configuration functions that can be accessed via the Plant explorer and Project
Explorer interfaces.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules and diagrams, which are not
supported by this standard.

Section 1, Basic Functions and Components, describes all the basic functions
that are available via system functions, Basic library, and commands in the
Control Builder interface. This section also describes the type and object
concept, and how variables and parameters are used.

Section 2, Alarm and Event Handling, describes the types in the Alarm and
Event library and how to use them to add alarm and event functions to objects
that do not have alarm functionality built into them.

Section 3, Communication, describes the types in the Communication libraries
and how to use them to establish communication between controllers.

Section 4, Online Functions, describes Control Builder functions in online
mode.

3BSE035980-600 A 15

Document Conventions About This User Manual

* Section 5, Maintenance and Trouble-Shooting, describes Control Builder
maintenance functions. It also describes how to use the Import/Export function,
how to write an error report, the location of various log files, how to read these
log files, and how to fix some common problems.

* Appendix A, Array, Queue and Conversion Examples contains some examples
on how to use queues and arrays, and how to convert numbers from one format
to another.

* Appendix B, System Alarms and Events describes system alarms and system
simple events from a controller perspective.

Before running SIL certified applications in a High Integrity controller, refer to
@ System 800xA Control AC 800M Getting Started (3BSE041880%*) manual.

Document Conventions

Microsoft Windows conventions are normally used for the standard presentation of
material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Feature Pack

The Feature Pack content (including text, tables, and figures) included in this
User Manual is distinguished from the existing content using the following
two separators:

Feature Pack Functionality

<Feature Pack Content>

Feature Pack functionality included in an existing table is indicated using a

table footnote (*) :
*Feature Pack Functionality

Feature Pack functionality in an existing figure is indicated using callouts.

16 3BSE035980-600 A

About This User Manual Warning, Caution, Information, and Tip Icons

Unless noted, all other information in this User Manual applies to 800xA Systems
with or without a Feature Pack installed.

Warning, Caution, Information, and Tip Icons

This publication includes Warning, Caution, and Information where appropriate
to point out safety related or other important information. It also includes Tip to
point out useful hints to the reader. The corresponding symbols should be
interpreted as follows:

Electrical Warning icon indicates the presence of a hazard which could result in
electrical shock.

injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard which could
result in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

Tip icon indicates advice on, for example, how to design the project or how to use
a certain function

f Warning icon indicates the presence of a hazard which could result in personal

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

3BSE035980-600 A 17

Terminology

About This User Manual

Terminology

A complete and comprehensive list of Terms is included in the Industrial'”

Extended Automation System 800xA, Engineering Concepts instruction
(3BDS100972%*). The listing included in Engineering Concepts includes terms and
definitions as they apply to the 800xA system where the usage is different from
commonly accepted industry standard definitions and definitions given in standard
dictionaries such as Webster’s Dictionary of Computer Terms.

Related Documentation

A complete list of all documents applicable to the 800xA Industrial'T Extended
Automation System is provided in Released User Documents, (3BUA000263*).
This document lists applicable Release Notes and User Instructions. It is provided in
PDF format and is included on the Release Notes/Documentation media provided
with the system. Released User Documents are updated with each release and a new
file is provided that contains all user documents applicable for that release with their
applicable document number. Whenever a reference to a specific instruction is
made, the instruction number is included in the reference.

18

3BSE035980-600 A

Section 1 Basic Functions and Components

Introduction

Control Builder is a programming tool that contains:

Compiler

Graphical programming editors that provide graphical representation of the
whole logic.

Programming editors for IEC-61131 languages
Standard libraries for developing controller applications

Standard hardware types (units) in libraries for configuring the controller

The Control Builder tool also includes system firmware and common functions such
as control system templates, task supervision, security and access management.
Most of the application development can be accomplished using the basic functions
and components presented in this section.

This section is organized in the following manner:

Control Project Templates on page 21 describes the different templates that can
be used to create a control project.

Control Projects on page 22 describes how to create and work with control
projects.

Program Organization Units, POU on page 23 introduces the Program
Organization Unit (POU) concept.

Entities and Reservation (Multi-User Engineering) on page 24 introduces the
concept of reservation and entities.

Environments on page 27 introduces the concept of environments.

3BSE035980-600 A

19

Introduction

Section 1 Basic Functions and Components

System Firmware Functions on page 30 describes firmware functions included
in the system, which can be used in any application.

Hardware on page 32 describes the standard libraries for hardware types.

Basic Library for Applications on page 42 describes the objects of the Basic
library, which can be included in any project.

Application Types and Instances on page 43 introduces the very important,
object-oriented, types and objects concept. This subsection also describes how
to add user defined types and how to create objects (instances) from types.

Variables and Parameters on page 81 describes how to use parameters and
variables to store and transfer values in the control system.

Library Management on page 135 describes how to work with libraries.

Hide and Protect Control Module Types, Function Block Types, Diagram
Types, and Data Types on page 158 describes how to hide and protect objects
and types, using the Hidden and Protected attributes.

Task Control on page 165 describes how to set up tasks to control the execution
of the applications.

Overrun and Latency on page 178 describes how to configure overrun and
latency control for the tasks.

Task Analysis on page 187 describes the Task Analysis tool that detects the
possible task overrun/latency problems in an application before its download to
the controller.

Security on page 195 describes how to set up access to actions and objects, as
well as how to set up access rights for SIL certified applications.

Search and Navigation on page 198 describes how to use the search and
navigation function to find all instances of a type or to find out where a certain
variable is used.

Analog Input and Output Signal Handling on page 213 describes how to enable
over and under range for input and output objects.

Backup Media on page 216 describes how to use the Backup Media as a
removable storage.

20

3BSE035980-600 A

Section 1 Basic Functions and Components Control Project Templates

Compiler Switches on page 233 describes how to use Compiler Switches to
control the behavior of compiler.

Reports on page 237 describes the function of the Difference Report and
Source Code Report.

Performance Management on page 251 describes how to gather information of
the applications using the Compiler Statistics tool.

Project Documentation on page 253 describes how to use the Project
Documentation function to document standard libraries, user defined libraries,
and applications in MS Word format.

Control Project Templates

A control project template sets up the necessary features required to build a control
project. The control project consists of system firmware functions, basic library
functions, application functions and a pre-set of hardware functions.

The 800xA System provides the following AC 800M control project templates:

AC800M
Template for normal use, and for running non-SIL applications.

AC800M_HighlIntegrity SM811
Template for running non-SIL, SIL.1-2, and SIL3 applications.

AC800M_HighIntegrity_ SM812
Template for running non-SIL, SIL1-2, and SIL3 applications.

EmptyProject
Template that requires a minimum configuration, with only the System folder
inserted. This template is rarely used.

SoftController
Template for developing software for simulating non-SIL applications without
a controller.

SoftController_HI
Template for developing software for simulating SIL applications without a
controller.

3BSE035980-600 A

21

Control Projects Section 1 Basic Functions and Components

For example, the AC 800M_HighIntegrity_SM811 template prepares a control
project for a PM865 CPU and an SM811 module, while the AC 800M template and
the SoftController template have completely different settings. The EmptyProject
template contains only the compulsory system firmware functions, with no
additional application or hardware functions.

A control project template can be selected from a dialog, when creating a control
project. For more information about creating a control project, see Create and Open
a Control Project in Plant Explorer on page 22.

Control Projects

A control project combines the control applications and the controllers together in
the Project Explorer. Several control projects can be created for the same control
network.

The control projects can be created either from the Plant Explorer or from the
Project Explorer.

Before creating a control project, set up and configure a control network in the
Control Structure (Plant Explorer).

Create and Open a Control Project in Plant Explorer

1. In the Control Structure, right-click Control Network and select New Object
to open the New Object window.

2. Select a control project template and enter a name for the control project in the
Name field.

3. Click Create to create a new control project.

The 800xA system starts the Control Builder, and the control project opens in
Project Explorer.

It is not required to close the Control Builder each time when a new control
project is to be opened. Control Builder automatically closes the previous project
and opens the new project in the background.

A SIL application can only run in an AC 800M High Integrity (HI) controller.
Create SIL applications by selecting the High Integrity control project template
(AC800M_Highlntegrity). See Control Project Templates on page 21. A control

22

3BSE035980-600 A

Section 1 Basic Functions and Components Program Organization Units, POU

project containing a VMT library, a VMT application, and a CTA application is
obtained if this template is used.

that the High Integrity controller and the compiler work properly. These libraries
and the compiler test application are used for internal checks only. Do not try to
alter or remove these applications or the VMT library.

@ The VMT library, VMT application, and CTA application are created to check

For more information, refer to SIL Certified Applications in the manual System
800xA Control AC 800M Getting Started (3BSE041880%). Also, refer to System
800xA Safety AC 800M High Integrity Safety Manual (3BNP004865%*), which
contains guidelines and safety considerations for all safety life cycle phases of an
AC 800M High Integrity controller.

Program Organization Units, POU

The IEC 61131-3 standard describes programs, function blocks, and functions as
Program Organization Units (POUs). The Control Builder also considers

control modules and diagrams as POUs. All these units are helpful in organizing the
control project into code blocks, minimizing code writing, and optimizing the code
structure and code maintenance.

A POU is an object type that contains an editor to write code and declare parameters
and variables.

All POUs can be repeatedly used in a hierarchical structure, except for diagrams and
programs that can only be a 'top-level' POU, inside an application.

3BSE035980-600 A 23

Entities and Reservation (Multi-User Engineering) Section 1 Basic Functions and Components

Entities and Reservation (Multi-User Engineering)

Entities and reservation provide support for multi-user engineering (working within
a project development group that involves several people).

Before modifying the properties of an object, the object must be reserved. This
ensures that only one user can modify an object at a time. This also protects
configuration data from being unintentionally modified when multiple users are
working on one system.

Reservations do not protect any runtime data or prevent download of modified
applications to a controller. For example, if a controller is reserved by user A, and
an application is reserved by user B, it is still possible for user C to download the
application. However, reservations are indicated in the Download dialog.

A single user who has logged on to more than one client, and several users who
use the same user account, can unintentionally overwrite configuration data.

If a user releases the reservation on an object, another user can reserve and modify
the object. However, it is only possible to make a reservation of entities, that is, the
smallest subset of objects that can be reserved is an entity.

An entity is a set of objects (with aspects) that is reserved as a single unit.

Unless an entity is reserved, parts of the Project Explorer will be read-only. For
example, some context menu items are disabled, and dialog boxes are read-only.

If environments are used, and a user reserves an entity in one environment,
another user can reserve the same entity in another environment.

Entities
The following objects are grouped as entities:
* Projects, applications, controllers
* Libraries, libraries with hardware types
* Control modules types, except hidden control module types
* Function block types, except hidden function block types
* Diagram types, except hidden diagram types
* Diagrams
24 3BSE035980-600 A

Section 1 Basic Functions and Components Reservation

An entity can be part of another entity. For example, applications and controllers are
part of a project, and control module types, function block types, and diagram types
are part of either an application or a library.

When an entity is reserved, all its objects are reserved. For example:

* When the user reserves a controller, all objects that are part of the controller
(objects such as hardware units and tasks) are reserved.

* When the user reserves an application, its programs and data types, but not
necessarily its diagrams, function block types or control module types, are
reserved.

In case environments are used, the entity icons in Project Explorer show only the

ﬂ reservation status for the existing environment. For example, the I?“, icon is
shown for the current environment; however, the Reservation dialog shows
complete reservation status.

Reservation
The entity must be reserved before it can be modified.
To reserve an entity:

1. Right-click the entity (for example, an application), and select Reserve to open
the Reserve dialog box.

2. Select the entities to reserve. Click Help for more information on how to use
the dialog box.

ﬂ The same dialog box (with a different name) also appears when an operation that
requires the reservation of one or more entities is performed.

To release the reservation of an entity after modifying it:

1. Right-click the entity (for example, an application), and select Release
Reservation to open the Release Reservation dialog box.

2. Select the reservations to release. Click Help for more information on how to
use the dialog box.

ﬂ In case environments are used, the reservation can only be released for the current
environment.

3BSE035980-600 A 25

Reservation Section 1 Basic Functions and Components

Use the Reserve &% and Release Reservation 7 icons in the Project Explorer
toolbar to reserve entities or to release the reservation. Some offline editors also
have a Reserve button.

To take over a reservation, both the Plant Explorer and the Project Explorer can
@ be used. For more information, refer to the System 800xA Configuration
(3BDS011222%).

26 3BSE035980-600 A

Section 1 Basic Functions and Components Environments

Environments

In 800xA Systems, environments provide isolated engineering. Since different
environments can have different content, a control application can be modified
without affecting the running control application. For example, the Engineering
Environment can contain a modified application, while the Production Environment
contains the running application.

ﬂ Environments require a separate license and are not available to all users. The
Project Explorer shows the information about an environment only when it is
being used.

For more information, refer to the System 800xA Engineering Engineering and
@ Production Environments (3BSE045030%).

Engineering and Production Environments

When environments are used, the basic combination is to have one Engineering
Environment and one Production Environment:

* Engineering Environment is used for engineering (For example, to modify a
project or an application).

* Production Environment is used to download a project (or a single application)
to the controller and go online. An operator can then use an Operator
Workplace opened in this environment to control the process.

When an entity in an environment is modified, the changes are visible in that
environment only, and not in any other environment. All users working in the same
environment can see the changes made by each other.

The user can transfer the modified entities from one environment to another. This is
called Deploy.

When a modified application is deployed from the Engineering Environment to the
Production Environment, the Production Environment no longer contains the
running application. Instead, the Production Environment contains the modified
application, which can be downloaded to the controller.

To change to another environment in the Control Builder, re-open the project in
@ the relevant environment.

3BSE035980-600 A 27

Engineering and Production Environments Section 1 Basic Functions and Components

When a project is deployed from the Engineering Environment to the Production
Environment, there is a possibility that a new application was created only in the
Production Environment and not in the Engineering Environment. In this case,
this application is not deleted from the Production Environment.

Environment Workflows

For a new project, follow this workflow:

1.

Create a new project in the Engineering Environment, and modify the entities
as desired.

Deploy the project and all other modified entities from the Engineering
Environment to the Production Environment.

Re-open the project in the Production Environment and download the new
project to the controller.

To modify an existing project, follow this workflow:

1.
2.
3.

Open the project in the Engineering Environment.
Right-click the project name, and select Refresh Project.

Modify the project without affecting the Production Environment, which
contains the project running in the controller.

Deploy the modified project to the Production Environment.

Re-open the project in the Production Environment, and download the
modified project to the controller.

28

3BSE035980-600 A

Section 1 Basic Functions and Components Remove Environment Changes

Deploying an Entity
ﬂ Deploy is only available in offline mode.

To deploy an entity (for example, an application):
1. Right-click the entity, and select Deploy.

2. Use the displayed Deploy dialog box to deploy the entity to the desired
environment.

The Deploy dialog box is the same as in Plant Explorer. For more information on
@ how to use the dialog box, click the Help button or refer to the System 800xA
Configuration (3BDS011222%).

Remove Environment Changes

When a project is opened in the Engineering Environment, the project may already
contain changes.

To start working with the same project as in the Production Environment:
Either

* Refresh the Engineering Environment, which recreates the entire Engineering
Environment as a copy of Production environment.

Or
* Replace selected entities.

In Engineering Environment, single entities can be selected and updated to be
identical with the Production environment. Refer to the manual System 800xA
Engineering, Engineering and Production Environments (3BSE045030%) for
more details.

3BSE035980-600 A 29

System Firmware Functions Section 1 Basic Functions and Components

System Firmware Functions

All system firmware functions are stored in the System folder, which is located at
the top of the library branch (in Project Explorer).

The System folder is not a library, even though it is always shown in the library
branch, together with the libraries (Basic library, Icon library, etc.)

The System folder contains fundamental IEC 61131-3 data types and functions,
along with other firmware functions, which can be used in firmware in the
controller. They are all protected and automatically inserted via the selected control
system templates.

The System folder cannot be changed, version handled or deleted from a control
project.

The system firmware functions that can be used in the application depends on the
Firmware version. To upgrade the Firmware, replace the BasicHWLib with the
latest version.

Table 1 contains the System firmware data types and functions. Refer the Control
Builder online help for more information and description.

30

3BSE035980-600 A

Section 1 Basic Functions and Components System Firmware Functions

To access the detailed online help and how-to-do instructions for a system
Q firmware function, select the data type or function, and press the F1 key.

Table 1. System Function Overview

System Functions Examples

Simple Data Types bool, dint, int, uint, dword, word, real, etc.

Structured Data Types time, Timer, date_and_time, etc.

Common Library Data Open structured data types like, BoollO, DintlO,

Types DwordIO, ReallO, HWStatus, SignalPar, etc.

Bit String Operations and, or, xor, etc.

Relational and Equality Equal to, Greater than, etc.

Functions

Mathematical Functions Trigonometric, Logarithmic, Exponential and
Arithmetic Functions.

Data Type Conversion Conversion of bool, dint, etc.

String Functions Handles strings like, inserts string into string,
deletes part of a string, etc.

Exception Handling Functions for handling zero division detection
integer and real values.

Task Functions SetPriority, GetPriority, etc,. Handles the priority of
the current task.

System Time Functions Exchanging time information between different
systems.

Timer Functions Functions to Start, Stop and Hold Timers.

Random Generation Functions for generating random numbers or values.

Functions

Variable Handling Functions | Reads and writes variable values.
Provides status information of communication
variables.

3BSE035980-600 A 31

Hardware Section 1 Basic Functions and Components

Table 1. System Function Overview (Continued)

System Functions Examples

Array Functions Handles arrays.

Queue Functions Handles queues.
Hardware

All hardware is defined as hardware types (units) in Control Builder. The hardware
types reflect the physical hardware in the system.

Hardware types are organized and installed as libraries. This makes it possible to
handle hardware types independently, with the following advantages:

* Since the libraries are version handled, different versions of the same hardware
type exist in different versions of the library. This makes it easy to upgrade to
newer system versions and also allows coexistence of new and old hardware
units.

* The new versions of a library (along with the hardware types) can be easily
delivered and inserted to the system.

A number of standard libraries with hardware types are delivered with the
system. A standard library is write protected and cannot be changed

* Only used hardware types allocate memory in the controller.

32 3BSE035980-600 A

Section 1 Basic Functions and Components

Standard System Libraries with Hardware

Standard System Libraries with Hardware

The standard system libraries with hardware are delivered by the system. Table 2
describes the standard libraries with hardware.

Table 2. Standard system libraries with hardware

Library

Description

ABBDrvFenaCl871HwLib

Fieldbus adapter for ABB drives, F-series through
the PROFINET IO

ABBDrvRetaCI871HwLib

Fieldbus adapter for ABB drives, R-series through
the PROFINET IO

ABBDrvFpbaCI854HwLib

Fieldbus adapter for ABB drives, F-series through
the PROFIBUS DP

ABBDrvRpbaCl854HwLib

Fieldbus adapter for ABB drives, R-series through
the PROFIBUS DP

ABBDrvNpbaCl854HwLib

Fieldbus adapter for ABB drives, N-series through
the PROFIBUS DP

ABBPNQ22CI871HwLib

Ethernet adapter to connect up to four FBP
FieldBusPlug devices like UMC100 or PST
through the PROFINET IO

ABBMNSISCI871HWLIB

Motor control center solution that can be used in
PROFINET IO network.

ABBPNI800CI854HwLib

ABB Panel 800 for PROFIBUS

ABBProcPnICI854HwLib

ABB Process Panel for PROFIBUS

BasicHWLib Basic controller hardware types for AC 800M and
SoftController
BasicHIHwLib Basic controller hardware types for AC 800M HI

and SoftController HlI

Cl1853Serial ComHwLib

RS-232C serial communication interface

CI854PROFIBUSHwLib

Communication interface PROFIBUS DP-V1

CI855Mb300HwLib

Communication interface MasterBus 300

3BSE035980-600 A

33

Standard System Libraries with Hardware

Section 1 Basic Functions and Components

Table 2. Standard system libraries with hardware

Library

Description

C1856S100HwLib

Communication interface S100 I/O system and
S100 I/O units

Cl857InsumHwLib

Communication interface INSUM

C1858DriveBusHwLib

Communication interface DriveBus

CI860FFhseHwLib

Communication interface FOUNDATION Fieldbus
HSE

CI1862TRIOHwIib

Communication interface for TRIO

C1865SattlOHwLIb

Communication interface for remote 1/0
connected via ControlNet

Cl867ModbusTcpHwLib

Communication interface MODBUS TCP

CI868IEC61850HwWLIib

Communication interface IEC 61850

CI869AF100HwWLIb

Communication interface for AF 100

CI871PROFINETHwLIib

Communication interface C1871

CI872MTMHwLib

Communication interface for MOD5-to-MOD5

C1873EthernetiPHWLib

Communication interface EtherNet/IP

ModemHwLib

Modem unit

PrinterHwLib

Printer unit

S20010CI854HwLib

S200 adapter and S200 I/O units for PROFIBUS

S20010CI873HwLib

S200 slave and I/O units for EthernetlP (CI1873).

S800CI830CI1854HwLib
S800CI840CI1854HwLib
S800CI801CI854HwLib

S800 adapters and S800 I/O units for PROFIBUS

S800loModulebusHwLib

S800 /O units for ModuleBus

34

3BSE035980-600 A

Section 1 Basic Functions and Components Customized Hardware Types

Table 2. Standard system libraries with hardware

Library Description

S900loCI854HwLib S900 adapter and S900 1/O units for PROFIBUS
SerialHwLib Hardware libraries for direct controller
COMLIHWLIib communication with external hardware, using
ModBusHWLib different communication protocols

S3964HWLIib

TCPHwLib

UDPHwLIib

For a complete list of the hardware types in the standard libraries, see Control
Builder online help.
If a suitable hardware type cannot be found in any of the standard system

libraries, it can be found in the Device Integration Library. The Device
Integration Library can be purchased separately from ABB.

Customized Hardware Types

Customized hardware types can be created in user-defined libraries, using the
Device Import Wizard. This is useful when the hardware types found in the standard
system libraries or the Device Integration Library are not sufficient.

The Device Import Wizard imports a device capability description file (for example,
a *.gsd file), converts the file to a hardware type, and inserts the type into the user-

defined library (See Create Libraries on page 141. Also see Device Import Wizard

on page 152 and Supported Device Capability Description Files on page 152).

User-defined libraries with hardware types are included while performing import
and export, and backup and restore, in the Plant Explorer. By using the import and
export function, it is possible to distribute the user-defined libraries with hardware
types. These libraries are developed centrally, or by ABB for a specific project to
other engineering systems. For further information, see Import/Export Libraries on
page 141.

In exceptional cases, it may be relevant to insert individual external customized
hardware types to a user-defined library (for example, to use a specific hardware
type, which have been converted and used in an earlier version of Control Builder).

3BSE035980-600 A 35

Configuring the Controller Section 1 Basic Functions and Components

The Source Code Report can be used to view the hardware types loaded in the
project. See Source Code Report on page 245.

Configuring the Controller
Before configuring the controller:

1. Insert the libraries, which contain the hardware types (units) to be used in the
controller configuration, into the control project.

2. Connect the libraries to the controller.

See Connect Libraries on page 136 for information on how to insert and connect
libraries.

Add Unit to Hardware in Controller Configuration

Perform the following steps to add a new hardware unit into the controller
configuration in Project Explorer:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click the unit to which a new hardware unit is to be added, and select
Insert Unit to open the Insert Unit dialog.

36 3BSE035980-600 A

Section 1 Basic Functions and Components Configuring the Controller

rﬂ Inzert Unit ﬁ1

=W, Connected Libraries Properties

' Elﬁﬂl CI854PROFIBLSHwWLD 2.0-10 Description:

=l Hardware types
o

0 c1a72MTMHWLb 2.0-8

Wl Libraries in Project ositien 3 h

|| Enable redundant mode

CI854: Communication Interface Profibus-DPV1

MName:

Selected item in Project Explorer

MName: AC 800M
Position: N/A
Previous Mext
[Insert] [Close] [Help]

Figure 1. Insert Unit dialog for inserting hardware in a controller configuration

ﬂ It is not possible to select Insert Unit if the unit cannot contain any sub-units or if
no more positions are available.

3. Expand the relevant library folder under Connected Libraries, and select the
hardware type to be included.

ﬂ The Libraries in Project contains libraries that are added to the project but not
yet connected to the controller. If a unit is selected under Libraries in Project,
the option to connect the library to the controller appears.

4. From the Position drop-down list, select a position for the hardware unit.

By default, the first available position is chosen. If no more positions are
available, the Position drop-down list is empty and the Insert button is
disabled.

3BSE035980-600 A 37

Configuring the Controller Section 1 Basic Functions and Components

5. For units supporting redundancy, check the Enable redundant mode check
box, and select a position for the backup unit.

ﬂ Some redundant units have a fixed position offset. For these units, the backup
position is automatically calculated, and the user cannot change this position.

Click Previous or Next to navigate to another unit in the Project Explorer
@ hardware tree.

6. In the Name field, enter a name for the unit. After the unit is inserted in the
hardware tree, this name appears along with the name of the selected type.

7. Click Insert to apply the changes made.
8. Click Close to close the dialog.

To rename the unit after it is inserted, right-click the unit, and select
@ Rename Unit.

Sk 4] Hardware AC 800M
I - 0 PMEGS / TPE30

1 CEn
2 cms4
2 B3

- 1 Pressure Sensor AIB20

..

Figure 2. Example of a hardware tree with a name for the AI820 unit

Replace Hardware in a Controller Configuration
Perform the following steps to replace a hardware unit in a controller configuration:

1. Make sure that the library, which contains the hardware type to be added, is
inserted to the project and connected to the controller.

2. Right-click on the unit to be replaced, and select Replace Unit to open the
Replace Unit dialog.

ﬂ The Replace Unit dialog works in the same way as the Insert Unit dialog, except
that it is not possible to change the position of the unit in the Replace Unit dialog.

38 3BSE035980-600 A

Section 1 Basic Functions and Components Configuring the Controller

While the hardware unit is being replaced in a controller configuration, the system
retains the settings and connections, and also retains the units in the existing
subtrees. For example, replacing a CPU with a similar one can be done without any
connection loss or data loss.

3BSE035980-600 A 39

Enabling Web Server Section 1 Basic Functions and Components

Enabling Web Server

The diagnostics and maintenance operations of Communication Interface modules
are done using the web server feature. By default web server is disabled and
secured.

The web server for Communication Interface modules can be accessed and enabled
on request using the Enable Web Server option from the control Builder.This
option is visible only when Communication Interface modules are configured and
the controller is online.

To enable the web server, right click the PM8xx controller module and select
Enable Web Server option.

& Control Builder M Professional - Test1 CIPTT-02-5YS-04 System I;li.
File Edit View Tools Window Help
S IE XX A
= 4 Controllers
= _’:!, Controller_1 (172.16.0.225)
+]-- @, Connected Applications

+ ----- I Connected Libraries
gl Hardware AC 200M

01| 0L (U) PMS66 g
+ {ﬁ@ 1 (Cla54 Editor Enter
_{ﬁ 6703 Cl Clear Latched Unit Status
DE 1 Enable Web Server
é‘% i - Search... Alt+F12
:ﬁ 4 (8[); Go to Type
M 5 Go to Object in Plant Explorer
= (Elg 4(88) CIE - N
4@ 1 (80— o
{L‘g 2 Alg10
{Dg 3 AOQB10
{Dg 4 Digo
ARl 5 Dog1n

Figure 3. Enabling Web Server

For more details on diagnostics and maintenance operations of CI modules using
web server, refer to the respective CI manuals, AC 800M PROFINET 10

40 3BSE035980-600 A

Section 1 Basic Functions and Components Basic Hardware

Configuration (3BDS021515%), AC 800M PROFIBUS DP Configuration
(3BDS009030%*), AC 800M FOUNDATION Fieldbus HSE (3BDD012903%).

Basic Hardware

The two Basic Hardware Libraries: BasicHwLib and BasicHIHwLib, contain
standard system hardware types that are used when configuring the AC 800M
controller and SoftController. The standard system hardware types are installed
along with the Control Builder.

ﬂ Only one version of a Basic Hardware Library can be connected to a controller.

The BasicHwLib contains the following basic controller hardware:

e Controllers (AC 800M and SoftController)

* Compact Flash (CF) units

* Secure Digital (SD) units

¢ CPU units (PM8xx and CPU)

* Ethernet links, serial Com ports, and PPP ports
* ModuleBus

e IP

IAC MMS

The BasicHIHwLib contains the following basic controller hardware:

e Controllers (AC 800M HI and SoftController HI)
CPU unit (PM865 HI)

CPU unit (PM867)

SM&811 and SM8&12 units

Ethernet links, serial Com ports, and PPP ports

* ModuleBus

« IP

IAC MMS

3BSE035980-600 A 41

Basic Library for Applications

Section 1 Basic Functions and Components

Basic Library for Applications

The Basic library contains basic building blocks for AC 800M control software. It
contains data types, function block types and control module types with extended
functionality, designed by ABB.

v

The contents inside the Basic library can be categorized as follows:

 IEC 61131-3 Function Block Types.

e Other Function Block Types.

e Control Module Types.

For a complete list of data types, function block types, and control module types
in the Control Builder standard libraries, refer to the manual System 800xA
Control AC 800M Configuration (3BSE035980%*)

Table 3. Basic Library Overview

Basic Functions

Examples

IEC 61131-3 Function Block
Types

Standard bistable function block types (SR, RS).

Standard edge detection function block types
(R_TRIG, F_TRIG).

Standard counter function block types (CTU, CTD,
etc.)

Standard timer function blocks type (TP, TOn, etc.)

Other Function Block Types

ACOF (Automatic Check Of Feedback) functions,
converters, pulse generators, detectors, system
diagnostics, timers, compares, etc.

Control Module Types

Connection module for group start sequences
(GroupStartObjectConn), ControlConnection inputs
and outputs, Error Handler, Forced Signals, and
acknowledgment of ISP values for communication
variables.

42

3BSE035980-600 A

Section 1 Basic Functions and Components Application Types and Instances

Application Types and Instances

Types and instances form the basis of the application structure. This subsection
contains an overview of the following:

The type and instances concept, see Types and Instances - Concept on page 44.

The editors that are used to create and configure the types, see Define a Type in
the Editor on page 45.

Important differences between control module types, function block types, and
diagram types, see Control Module Types, Function Block Types, and Diagram
Types on page 54.

How to create types directly in an application, and how to create types in the
library for re-use in applications. See Types in Applications on page 56 and
Types in User defined Library on page 57.

How to create complex types so that they are flexible enough for future
upgrades, see Modify Complex Types on page 58.

What to consider and what to set up before creating types and using them, see
Decisions When Creating Types on page 64.

How to create objects from types and connect the object to the surrounding
application or type, see Create and Connect Instances on page 66.

Details about diagrams and diagram types, see Diagram and Diagram Types on
page 59.

How different objects are executed, see Function Block Execution on page 71,
Control Module Execution on page 73, and Diagram Execution on page 74.

How to use single control modules as containers for control modules, see
Single Control Modules on page 76.

The aspect object setting, see Aspect instances on page 80.

3BSE035980-600 A

43

Types and Instances - Concept Section 1 Basic Functions and Components

Types and Instances - Concept

Types are used to represent motors, valves, tanks, etc. that are located in a plant
area, and then turn them into manageable units in a control project (for example,
motor types, valve types, mixer types, and so on). Instances are created based on
each of these types.

A type is the source (the blue print) for a unit (motor, valve, tank, etc), while an
instance represents the unit(s) in libraries and applications. There is an inherited
mechanism between a type and all its instances, where all instances have the same
performance as the type, and changes performed in the type affect all instances
simultaneously.

A type is a generic solution, which can be used by many instances, and contains
programming code with variables, functions, connection parameters (textual and

graphical), graphical instances, and formal instances.

Figure 4 shows the relationship between a type located in a library and two
instances created in an application.

Library

type
If A = 10then
B:= A+1;
end_if;
Application instancet ¢ N instance2
Al 3 A [10
B|7 B |11

Figure 4. Relationship between a type and two instances.

The type contains the code, whereas each instance contains a list of computed
variable values. The instance does not contain any code; it uses the code inside the
type for manipulating its own local variable values.

1. Formal instances are instances of another type located inside a type. These, along with instances based on that
type are executed in applications.

44

3BSE035980-600 A

Section 1 Basic Functions and Components Define a Type in the Editor

A type is always static and cannot run by itself in applications. To execute the code
inside the type, an instance based on the type must be created. The instance executes
the code located inside the type. To create an instance, point to a type either in a
library or in an application.

All instances based on the same type have the same characteristics, which means
they have equal access to everything in the type. An instance does not contain a
programming editor or code blocks; hence the code cannot be written inside an
instance. All logic must be created in the type.

The allocated memory for creating a type solution (for example, a motor type
solution that contains one motor type and 20 motor instances) is distributed mainly
on the programming code inside the type. Therefore, the cost (allocated memory)
for each new instance (motor) is very small, compared to the type itself. The
instance only needs to allocate memory for variables, as the code is located and
executed from the type. However, the number of instances are relevant for
considering the total CPU memory.

It is easier to update the application while working with newer version of types,
since the inherited mechanism takes care of changes that often concern hundreds of
instances. A code change (for example, declaring additional connection parameters)
can be done once for the type, and this change is inherited by all instances
simultaneously.

Control Builder also contains a number of structured data types. For more
information, refer to the System 800xA Control AC 800M Planning (3BSE043732%)
manual. A type described in this sub-section is a function block type, a control
module type, or a diagram type.

Define a Type in the Editor

Select the type from Project Explorer and open the corresponding Editor to declare
the necessary parameters for the type.

The editor of a type contains several declaration panes that can be opened from the
following tabs:

. Parameters
. Variables
J Function Blocks

3BSE035980-600 A 45

Define a Type in the Editor

Section 1 Basic Functions and Components

* Control Modules (only for diagram type editors)
* Diagrams (only for diagram type editors)

Apart from the declaration panes, the editor contains:

* Programming editor for programming the code using IEC-61131 languages
(see Figure 11).

* Graphical editor called CMD Editor (only for control module types, see
Figure 14).

* Graphical programming editor for FD (Function Diagram) (only in diagram
type editor, see Figure 13)

Declaration Pane for Parameters

To open the declaration pane for parameters, double-click the type (to open the
editor), and then select the Parameters tab.

Figure 5 shows the editor for My_MotorType, with the declaration pane for
parameters selected. These parameters can be used for connecting variables outside
the instance.

MName |Data Type |Attributes |Direction |FD Port |Initial Value|Description o
1 joutd BoollO
2 |FB1 |BoollD
3
L -
< v Parameters £ Variables »_EsxternalVariables A _Function Blocks /| « [r

Figure 5. Declaration pane for creating connection parameters

Declaration Pane for Local Variables

To open the declaration pane for variables, double-click the type (to open the
editor), then select the Variables tab. If the editor is already open, simply select the
Variables tab.

Figure 6 shows the declaration pane for creating local variables inside the type. The
local variables can be used by the code inside the type.

46

3BSE035980-600 A

Section 1 Basic Functions and Components Define a Type in the Editor

Mame Data Type Attributes Initial %alu |Description 1=
1 |MotorStarTime [time retain 10s —
2
3
4
'_| M _Parameters » Variables A4 Euernal Variables Function Blocks /T« | »
Row 1, Caol 1
Figure 6. The declaration pane for creating local variables
Declaration Pane for External Variables
External variables are pointers to global variables. An instance can declare an
external variable locally and then use this variable to access the value in a global
variable located in the application. External variables and global variables are
discussed in External Variables on page 96.
Declaration Pane for Communication Variables
Communication variables are declared in top level Diagram editor, Program editor,
or top level Single Control Module editor. For details about communication
variables, see Communication Variables on page 101.
Figure 7 shows the declaration pane for communication variables in a Diagram
editor.
Name |Data Type |Attributes |Direction |Initial Value|ISP Value |Acknowledge Group |Interval Time |IP Address Expected SIL |Unique Id |Description
1 al real retain in 1 0 1 fast 172.16.18.3 same 201
2 b1 real retain in 11 2 auto very fast auto SIL3 1202
3 el real retain out 1 slow 203
4
« v % Variables 5 Communication Variables Function Blocks A Control Modules A Diagrams 7 I« &

Figure 7. Declaration pane for communication variables

3BSE035980-600 A 47

Define a Type in the Editor Section 1 Basic Functions and Components

Declaration Pane for Function Blocks

To open the declaration pane for function blocks, double-click the type (to open the
editor), and select the Function Blocks tab. If the editor is already open, simply
select the Function Blocks tab.

Figure 8 shows the declaration pane for declaring function blocks inside the type.

Mame Function Block Type (Task Connection|Description -

Ol on

e | e [b | —

» i _Parameters p Vatiables p Exdernal Variables p Function Blocks [[«| | »

Fow 1, Cal 1

Figure 8. Declaration pane for creating function blocks inside a type

Enter the name of the function block in the Name column, and select the cell in the
Function Block Type column. Press CTRL+J to open a context menu with all
function block types available.

Connect all libraries with the required function blocks types to the application.
Only then, the available function block types are listed in the context menu
(CTRLH])

Declaration Pane for Control Modules

To open the declaration pane for control modules, double-click the diagram or
diagram type (to open the editor), and select the Control Modules tab. If the editor
is already open, select the Control Modules tab.

Figure 9 shows the declaration pane for declaring control modules inside the
diagram or diagram type.

48

3BSE035980-600 A

Section 1 Basic Functions and Components Define a Type in the Editor

MName Contral Module Type [Task Connection |Description
1 |Alarm_2322 |AlarmCondM
2
3
4
b
« v % Variables 4 Communication Variables » Function Blocks 4 Control Modules ;H 4 [
Figure 9. Declaration pane for creating control modules inside a diagram type
Enter the name of the control module in the Name column, and select the cell in the
Control Module Type column. Press CTRL+]J to open a context menu with all
control module types available.
Connect all libraries with the required control module types to the application.
@ Only then, the available control module types are listed in the context menu
(CTRL+)).
Declaration Pane for Diagrams
To open the declaration pane for diagrams, double-click the diagram type or
diagram (to open the editor), and select the Diagrams tab. If the editor is already
open, select the Diagrams tab.
Figure 10 shows the declaration pane for declaring diagrams inside the diagram type
or diagram.
MName Diagram Type Description
1 |Malve101 Diagram_Area
2
3
4
q‘: v % Variables 4 Communication Variables »_ Function Blocks A _ Control Modules 4 Diagrams ﬂ]

Figure 10. Declaration pane for creating diagrams inside a diagram type

3BSE035980-600 A 49

Define a Type in the Editor Section 1 Basic Functions and Components

Enter the name of the diagram in the Name column, and select the cell in the
Diagram Type column. Press CTRL+J to open a context menu with all diagram
types available.

Connect all libraries with the required diagram types to the application. Only
@ then, the available diagram types are listed in the context menu (CTRL+J).

Code Pane for Control Module Types and Function Block Types

The code pane in the editor for programs, control module types, function block
types, and single control modules supports five programming languages that
conforms to the IEC 61131-3 standard. The code pane is always active, and can be
accessed irrespective of which tab is selected (parameters, variables, function
blocks, etc.).

The code pane can be expanded using more code blocks up to 100 for structuring
the code. These code blocks are then executed either in a predetermined order as
decided by the compiler (control modules), or from left to right (function blocks).

Figure 11 shows a part of the code pane of a control module type editor. This code
block uses Structured Text (ST) as the language. This editor contains two code
blocks: Control and Start_Code.

MNarne Function Block Type [Task Connection|Description ﬂ
1 Jn1 on
| * |\ Fararmeters A Wariables A External Variables A Flﬂ 1 |]
if not outl Forced then -
outl I0Valuse = outl Valus;
end_1f:
Tonli{ In = outl. IOValue,
FT := HotorStartTime)
ftbl . I0OValue := TOnl.Q:
if not fbl Forced then
ftbl Value:= fbl . IOValue:
end_if:
Control A Start_Code /f | 4 »

Rownd, Cal 1

Code blocks Code pane
Figure 11. A code pane with two code blocks.

50 3BSE035980-600 A

Section 1 Basic Functions and Components Define a Type in the Editor

A brief description of code blocks in general and Start_ code blocks:

* Code blocks are very useful for structuring the code. Dividing the
programming code into a number of code blocks, improves the overall code
structure and readability. Examples of code blocks are Control, Object Error,
Operators, etc.

ﬂ Code block names cannot contain certain characters. See Online help for
information on characters that cannot be used in code block names.

e There is no limit to the number of code blocks that can be created in a type.
Create only the required number of code blocks, since each code block affects
the memory consumption and the execution time of the type.

e Start_

A code block with the prefix Start_ is always executed first in an application
and only once, at the application startup (after a warm and cold start, but not
after a power failure).

ﬂ The Start_ code block is valid only for single control modules and control module
types.

This code block must be used for initiating alarm strings, converting project
constants to strings, etc.

However, there are some limitations while using the Start_ code block:

— Itis not suitable to place functions, function blocks, etc, in a Start_ code
block.

— Itis valid only for the code blocks in control modules, and not for the code
blocks in SFC (Sequential Function Chart).

— The FirstScanAfterApplicationStart function must not be used in the
block.

— Function blocks for communication must not be used in the block.

If the application contains a very large chunk of code that has to be run in the first
scan (for example, alarms in the Start_ code block), the execution time can be so
high that overrun occurs. This leads to the eventual shut-down of the controller.

3BSE035980-600 A 51

Define a Type in the Editor Section 1 Basic Functions and Components

Code Block Context Menu

Right-click a code block tab to access the code block context menu.

Start_Caode 3 Control
Insert..,

Delete '

moduls_type Change Language. ..

Rename..,

Arrange...

Select. ..

Figure 12. Code block context menu

Graphical Code Pane for Diagram Types

The code pane in the editor for diagram type supports the FD (Function Diagram)
language. The FD code block in this editor allows mixing of functions, function
blocks, control modules and other diagrams, through graphical connections, to
create the logic. Variables and parameters can also be connected graphically. This
represents a complete graphical overview of the whole logic.

The FD code block is always active, and can be accessed irrespective of which tab is
selected in the declaration pane (parameters, variables, function blocks, control
modules or diagrams).

The logic created in the default FD code block can be expanded using optional ST
and SFC code blocks, which can be invoked in the FD code block or sorted
separately.

To open this editor, right-click the diagram type, and select Editor. Figure 13 shows
an example logic created in the FD code block of diagram type editor.

52

3BSE035980-600 A

Section 1 Basic Functions and Components Define a Type in the Editor

- AnalogOuCC 1:4
(AnalogDutCC

AnalogInCC_11 PICEE = Mame Qut
(BnaloginCC '“\| SpPICES ={Sp VoteOut— :\IEITE AnalogDutput = Out11
Name Qut Pv A =
In11 = Analoglnput -

ERF
= Feedforward
= VotedCmd

add-2 TrackValue
add A
Tt [N

1o N2

Figure 13. Example logic created in the graphical code pane of diagram type editor

Graphical Editor - CMD Editor

The graphical editor, Control Module Diagram Editor (CMD Editor) is also a
combined editor for drawing and programming. The term ‘diagram’ refers to the
graphical view of control modules and connections.

Use this editor to create and edit control modules, code, and graphics, and to
connect variables and parameters.

To open the CMD Editor, right-click the control module type {2k and select CMD
Editor. Figure 14 shows part of the graphical editor (CMD Editor).

3BSE035980-600 A 53

Control Module Types, Function Block Types, and Diagram Types Section 1 Basic Functions and

c

KB 0RE o0 i

HBERREE® DO

o
=

Figure 14. Graphical objects created in the CMD Editor.

The drawing functions in the CMD editor include basic auto shapes (lines,
rectangles, etc.), ready-to-use interaction instances (option buttons, check boxes,
etc.), and composite instances (trend graphs, string selectors, etc.). The graphical
instances are dynamic, that is, with changing variable values, the points move,
colors change, and numerical values are presented.

Control Module Types, Function Block Types, and Diagram Types

A type can be a control module type, a function block type or a diagram type. The
usage of different types can be mixed. For example, a control module can be created
inside a function block type (to add graphics), or a function block can be created
inside a control module type (to execute a list of basic functions). In a diagram type,
it is possible to create function blocks, control modules, and diagrams, to define the
entire logic.

54 3BSE035980-600 A

Section 1 Basic Functions and Components

Control Module Types, Function Block Types, and

Table 4. Differences between types

Property

Differences

Function Block Type

Control Module Type

Diagram Type
(supports mixing
function blocks, control
modules, and nested
diagrams)

Container POU

Programs, Diagrams

Diagrams or Single

Diagrams

inside the or Single Control Control Modules

application Modules

Graphical Yes Yes Yes, including graphical

connections connection to

between objects parameter/variable
objects.

Code sorting No Yes Yes.

All code blocks, in control
modules inside the
diagram type, are sorted
together with the code
blocks outside the diagram
type in the container
Diagram.

Execution

Function blocks are
executed from code.
Therefore, a function
block is executed once
or several times per
scan, or it is not
executed at all.

Control modules are
executed only once
per scan.

The execution order
shown in the diagram is
followed. Codeblocks from
control modules are sorted
into the diagrams
execution order according
to control module sorting
rules (writing into a
variable is sorted before a
read).

3BSE035980-600 A

55

Types in Applications Section 1 Basic Functions and Components

Additionally, the following properties apply to function block types:

* Parameter values on function block types are copied (except In_Out parameters
and parameters having by_ref attribute, see Function Block Execution on page
71).

* Function block types are required when using extensible parameters (see
Extensible Parameters in Function Blocks on page 127).

The choice between control module types, function block types, and diagram types
depends on the context and environment. For guidelines about the use of control
modules, function blocks and diagrams, refer to the System 800xA Control AC 800M
Planning (3BSE043732%*) manual.

Types in Applications

Creating a type in an application is the quickest and easiest way to get started.
Before creating types in an application, no new libraries need to be created; use the
available methods like connect libraries, create user defined data types, and select
the object type to use (see Decisions When Creating Types on page 64). However, if
a type is created directly in an application, it can only be used inside that
application.

B @, Applications

E:: | Application 1 - (Centreller_1.Normal)
..... i, Connected Libraries
g @ Function Block Types
b 32k PumpType
= [Centrel Module Types
o 7L PumpMotor_Type
g ----- ¢ Diagram Types
..... @My_Mntor_T}rpe
..... i) Diagrams
..... #l; Programs

Figure 15. Types created under an application

To gain access to standard libraries (or user defined libraries), insert them into the
control project (see Library Management on page 135), and connect them to the
application. This allows the creation of instances in the application, from existing
types in the connected libraries.

56 3BSE035980-600 A

Section 1 Basic Functions and Components Types in User defined Library

Types in User defined Library

The advantage of creating types inside a library, instead of creating them directly in
an application, is the possibility to re-use them in other applications. If the types are
created in a library, all the necessary functionality can be stored in this library. The
library can then be connected to any application.

If a new library is created, user defined types can be created in that library (the
800xA System does not allow creation of types in a standard library).

=P 7 My Typelib 1.0-0

- W Connected Libraries

o I BasicLib 17-2 Functionality from the
i [ControlAdvancedLib 1.5-5

. [P ControlStandardLib 1.5-6 Control libraries
. e [0 ControlSupportLib 1.4-4
Bl ¢ Diagram Types

Type ——M MyControlLocp
o ﬁAnalogInCC_l ControlStandardLib.AnaloginCC
- ﬁAnalogOutCC_l ControlStandardLib.AnalogQutCC
- ﬁ PidAdvancedCC_1 ControlAdvancedLib.PidAdvancedCC

Figure 16. A Type (MyControlLoop) created in MyTypeLib library. This example
shows a control loop created as a diagram type, while the components are ready-
made instances from the standard libraries

3BSE035980-600 A 57

Modify Complex Types Section 1 Basic Functions and Components

Modify Complex Types

This subsection describes a use case where it is preferable to copy two types, instead
of keeping a single and very large type in a library.

Refuse Incinerator Type - Problem
In this example, assume that a plant area has two identical refuse incinerators.

A type solution like this is manageable if a Refuse Incinerator type is created in a
library with several underlying types. This type can then be re-used twice (as two
objects), in two separate applications, by connecting the library to each application.

The following are the examples of underlying types inside the Refuse Incinerator
type:

* A Feeder type containing 10 conveyors.

* A Combustion type.

* An Ash Handling type.

* A Flue Gas type.

After building the Refuse Incinerator type in the library, connect the library to both
Application_1 and Application_2. This helps in creating an Incinerator] instance in
Application_1 and an Incinerator2 instance in Application_2.

If the Incinerator2 instance running in Application_2 suddenly needs an individual
change (for example, 20 conveyors instead of 10 conveyors), edit the library and
change the Feeder type inside the Refuse Incinerator type. But, changing anything
inside the Refuse Incinerator type affects both incinerators due to the type and
instance inherit mechanism.

By changing the Feeder type to include 20 conveyors, both the Incinerator instances
are changed suddenly to contain 20 conveyors, which is not the intended use.

58

3BSE035980-600 A

Section 1 Basic Functions and Components Diagram and Diagram Types

Refuse Incinerator Type - Solution

To avoid the problem, once the type is ready, consider the possible individual
(instance) changes in the future. If an individual instance needs to be changed, copy
the type on the highest type level (in this example, Refuse Incinerator Typel and
Refuse Incinerator Type2).

Create an Incinerator10 instance in Application_1, based on Refuse Incinerator
Typel, and then create an Incinerator20 instance in Application_2, based on the new
type copy, Refuse Incinerator Type2. This increases the memory consumption in the
controller, but allows individual changes. For example, the number of conveyors in
the feeder for one of the applications can be changed, without affecting the other.

Diagram and Diagram Types

Diagrams are created under an application, and diagram types (which can be reused
as instances in a diagram) are created under a library or under the same application
as the diagram.

The FD code blocks in diagrams and diagram types allow mixing of functions,
function blocks, control modules, and other diagrams, and graphically connect them
to achieve a particular logic.

Figure 17 shows the workflow for using diagrams and diagram types.

3BSE035980-600 A 59

Diagram and Diagram Types

Section 1 Basic Functions and Components

Create

Create Library Application

. 1

Create
) Create
Diagram Type Diagram
for reuse
Diagram Type Editor Diagram Editor

k.

Extend the FD logic, by
invoking other ST or
SFC code blocks
created within the
same Diagram Editor
or Diagram Type Editor

Create the logic in FD language in the first code
block, by:

Inserting instances of Function Block Types,
Contral Madule Types, and Diagram Types
available in the libraries in the project

Inserting Functions from System library

Graphically connecting the instances and

functions through the ports

Inserting variables and connecting them to

other ports

F Inserting parameters for external connection

‘_.‘

In Diagram Editor, extend
the FD logic across
different applications {in
same controller or in
different controllers) using
Communication Variables

{only applicable to Diagram Type Editor)

Connect the application to controller and
define task connection for the Diagram

I

Connect the /O Variables to the required
hardware channels through hardware editors

!

| Download all the required applications to controllers

Figure 17. Workflow for using Diagrams and Diagram Types

60

3BSE035980-600 A

Section 1 Basic Functions and Components

Diagram and Diagram Types

Figure 18 shows the editor for a diagram POU under an application.

r Diagram - Applicatien_l.Diagram1 =NAC X
Editor Edit View Insert Toocls Window Help
A Z & = | AAA & @D A G L2 + 4t @ S [100%
Name Data Type Attributes Initial Value|l/O Address |Access Variables Description

2

4 }

Variables 4__ Communication Variables _»_ Function Blocks __»_ Control Module]| « [P

4] 4]

AN i r

4+ Code

Figure 18. Editor for Diagram POU
The diagram editor consists of declaration pane and code pane. The code pane
contains a grid area where you add the objects and create graphical connections.

The editor for diagram type also looks similar. The editor for a top level diagram
(under the application) differs from a Program editor in following ways:

* The first code tab is always a FD language tab.
* Additional code block tabs can be created, but only for ST and SFC.

* Two additional tabs — Control Modules and Diagrams — are available in the
declaration pane.

The editor for a diagram type (under the application or library) differs from a
diagram editor in following ways:

e There is a Parameter tab instead of a Communication Variables tab in the
declaration pane.

e There are no I/O Address or Access Variables columns in the Variables tab.
The diagram editor or diagram type editor has one mandatory FD code block.

Only one FD code block is allowed within this POU. It is allowed to have several
optional ST and SFC code blocks in the diagram editor or diagram type editor.

3BSE035980-600 A

61

Diagram and Diagram Types Section 1 Basic Functions and Components

Figure 19 shows the editor for a diagram after it is edited (to create an example

logic).
(" Diagram - Application_1Diagram2 - R =3 ! IR
ﬁ Diagram Appllcatlon_l.[)lagram2- - - i
Editor Edit View Inset Tools Window Help
RHAZYy @0 904 0 A& & BT LA B 89 T2 i
LE B AR L
Name Data Type Attributes Initial Value IO Address |Access Variables [Description -
1 |var bool retain (d
2 |var2 bool retain
3 |vard boal retain
4
IE i
\[« » % Variables /4 Communication Variables _» _Function Blocks A Contrd]| « || 3
|l »

New_Diagram_Type_1:3
ew_Diagram_Type

m

MNew_Control_module type 15

_Control_module
[wvar3

1

|

1 -
4] 4]1 ~ (][] « | i D
« v \Code {BFC1 7

Figure 19. Editor for diagram POU with an example logic created

62 3BSE035980-600 A

Section 1 Basic Functions and Components Diagram and Diagram Types

Characteristics of Diagrams and Diagram Types
The following are the main characteristics of diagrams and diagram types:

* A diagram or diagram type can contain other diagrams (which are the instances
of other diagram types), in addition to functions, function blocks, and control
modules.

* The objects inserted in the diagram editor or diagram type editor can be
connected graphically through ports, to create the logic.

* The port of an object inserted in the diagram editor or diagram type editor can
be connected to variable by entering the name of the variable or by graphically
connecting the port to the variable object.

* The FD code block in the editor also supports Split blocks and Join blocks to
work with objects having structured data types:

— A Split block splits the structured data type variable, connected as its
input, to its components that are displayed as output connection ports.
These output connection ports can be connected to variables based on the
data types.

— AlJoin block displays input connection ports, which are the components of
the structured data type, and these can be connected to variables. The
output connection port is connected to the structured data type variable.

ﬂ Split and Join blocks does a copy of the variable in run-time. To avoid a copy,
create a variable and make the components visible, or do component connections
directly.

Split and Join blocks must not be used if the structured data type has components
ﬂ with reverse attribute.
For the Split block, if reverse components are used, a change in the extracted
(split) data of a reverse component does not result in a change of this component
in the structured variable. For the Join block, if reverse components are used, it is
not possible to write to an out variable using Join, even if the attribute is reverse.

* The FD code pane supports creation of additional pages for adding more
objects and connects the objects graphically across pages. This helps to extend
the logic from the default page.

3BSE035980-600 A 63

Decisions When Creating Types

Section 1 Basic Functions and Components

The logic created in the FD code pane can be extended through connections to
other ST and SFC code blocks in the editor.

The FD logic can be extended across different applications by using
communication variables declared in the diagram editor. These variables
support cyclic communication between the top level diagrams, top level
single control modules and programs in different applications.

The FD code block in a diagram is the only code block in Control Builder that
supports a lower SIL input signal to be used in a higher SIL application. This is
done using graphically connected communication variables in the editor.

Decisions When Creating Types

This subsection describes the decisions to be made about the types before
programming the code, and declaring parameters and variables. Many functions and
type solutions have been developed already, and the Control Builder helps to set up
and access these options before programming. Read more about design analysis in
the System 800xA Control AC 800M Planning (3BSE043732%).

The following decisions must be made before creating the types:

Whether there is a need to create instances in user defined type(s).

These types are based on other types located in external libraries. In that case,
those external libraries must be connected to the library or application.

Whether there is a need to create self-defined structured data types for passing
parameters through several layers of instances.

The data types are automatically connected to the library or application.
Structured data types are often useful in more complex type solutions, with a
deep hierarchical structure.

Whether a function block type or a control module type or a diagram type
should be used.

— If the code is programmed in the Program POU! only, select
function block types.

— If a graphical editor is preferred for programming the code, and automatic
code sorting is also preferred, select control module types.

. See Program Organization Units, POU on page 23.

64

3BSE035980-600 A

Section 1 Basic Functions and Components Decisions When Creating Types

If a graphical editor is preferred for programming the code, and automatic
code sorting as well as mixing of functions, function blocks, control
modules and nested diagrams are also preferred, select diagram types.
This helps you to overcome the limitations when using a single type.

For information on how to access these methods, refer to the Control Builder
@ online help. Select one of the folders in Project Explorer and press F1.

3BSE035980-600 A

65

Create and Connect Instances Section 1 Basic Functions and Components

Create and Connect Instances
An instance is a function block, control module or diagram, based on a type.

Each time a new instance is created, the Control Builder prompts for a type. The
type can be located in an inserted library (inserted into the control project), user
defined library, or directly in an application. In any case, a type and its location must
always be selected.

Once the type is selected, connect the connection parameters.

Figure 20 shows the creation of an instance (Pump10) based on My_MotorType,
which is a diagram type located in the application. The instance needs the location
(Application_1) and the type (My_MotorType).

66 3BSE035980-600 A

Section 1 Basic Functions and Components Create and Connect Instances

Dialog for creating an instance of a type in
Diagram editor

Type name and its location

= @ Applications
o | H H - (
S DR i ™" | W dtgrin-eptcaion 1egar:
; é Function Block Types Editor _kdit \iew Insert Tools |Window Help
@ & Control Module Types é g ENMObject o — = ——"—
= ¥ Diagram Types
- 88 My Motor Type 1]| [ust | Tree |Recent | Favprtes|
=, Diagrams 2 :
B8 Diagrami - (Controller_1.Fast) 3 &
2 Diagram2 - (Controller_1.Normal) 1 :
@ @8 Diagram3 - (Contreller_1.Slow) :
@ H Programs =
@ |4 Controllers L
- |
'
Ot W ok
Name: pump10
Description i
il 1
3 EN bize: o = |
. [mset][Close |[Hep | ||
4

Instance name

Figure 20. Creating instance of a diagram type in Diagram editor

3BSE035980-600 A 67

Create and Connect Instances Section 1 Basic Functions and Components

Connections Using Parameters

The instances can be connected either through graphics or through text, using the
parameters in their respective types.

Control Modules

For control modules (instances of control module types), graphical connections are
done directly in the Control Module Diagram (CMD) editor and textual connections
are implemented in the Connection editor.

Diagrams

For diagrams (which support instances of diagram types, function block types, and
control module types), both graphical connections and textual connections of
instances are done directly in the FD code block of the diagram editor.

Graphical Connections in CMD Editor

Graphical nodes and graphical connections in CMD editor connects the control
modules effectively.

The control module parameters, which can be graphically connected, contains
NODE in the beginning of the parameter description. This is the standard for all
control modules located inside the standard libraries.

Nodes for graphical connections can also be created for self-designed control
modules. Graphical connections are suitable for obtaining a comprehensive view of
main flows, for example, in a PID controller or for group start of several motors.
Figure 21 shows three graphical connections for group starting motors. The
modules are connected using the Graphical Connection function (located in the
CMD Editor).

68 3BSE035980-600 A

Section 1 Basic Functions and Components Create and Connect Instances

Figure 21. Two motor instances that have been graphically connected with a Start
and Next instance located in the Group Start library. The circles symbolize the
connection nodes

Textual Connection for Control Modules

To open the Connections editor via the Connections entry, right-click the
control module (instance of control module type) and select Connections.

Parameters can be connected to the actual variables presented in the Connections
editor. Textual connection is the only way to connect parameters when the control
module is subordinate to a function block, since there are no surrounding graphics.

ﬂ It is not possible to connect the same parameter both graphically and textually.

3BSE035980-600 A 69

Create and Connect Instances Section 1 Basic Functions and Components

Connect an instance of Control Module in Connections Editor

The Connections editor is a parameter/variable interface between the instance and
its closest surrounding. The Connections editor displays the parameters that are
declared in the type, with reference to the control module instance, and connects the
surrounding parameters/variables to the instance.

If a control module instance is created in an application (see Figure 22), then the
application can be seen as the closest surrounding, and the variables in the
application must be connected to the instance.

If a control module instance is created in a type (located in a library), then the type
can be seen as the closest entity, and parameters/variables in the type must be
connected to the instance.

To connect the parameters to instances located several hierarchical layers away
@ (not the closest), use structured data types that simplifies the connections (instead

of passing corresponding parameters). For more information on structured data

types, refer to the System 800xA Control AC 800M Planning (3BSE043732%)

A Motor Type

FB1
] |_ouTt
Name
? :F Code [—
I B B
Application
motor object
appfb1 - — — —
, FB1 I il
P Motor — |OUT1 appout1
umpMotor’ == [
— —
— — — — __— 1

K surrounding area /

Figure 22. A control module instance connected to variables in an application. The
application is the ‘surrounding area’ with the variables appfbl, Name (initial value
‘PumpMotor’) and appoutl connected to the instance.

70 3BSE035980-600 A

Section 1 Basic Functions and Components Function Block Execution

In Figure 22, the connection parameters for the motor instance connect the
parameters (FB1, Name and OUT1) to the variables (appfbl, appoutl, Name; Name
has the initial value PumpMotor) that have been declared in the application.

Function Block Execution
There are three types of function block parameters: In, Out, and In_out.

The input and output parameters are passed by value, which means that the function
block creates copies of each variable value, before and after the function block is
executed. The In_Out parameters are passed by reference, which means only a
reference to the actual variable outside the function block is passed to and from the
function block.

Input parameters create a copy of each variable before the function block executes,
and the output parameters create a new copy after the function block is executed and
pass the new values to the surrounding variables outside the function block.

For complex data types and strings, a reference to the data instance can be passed in
the function block call. This is achieved by setting the attribute of the parameter to

by_ref.
/ surrounding area (Program or in a type) \
Function block
before execution var after execution
o—— ¢ ——o0
o | var—_glout . var

_ %

Figure 23. In and Out parameters for a function block. This example illustrates how
In and Out parameters copies the variable (var).

Using by_ref on parameters enhances the performance. It takes a lot of execution
time to copy parameters in each scan.

3BSE035980-600 A 71

Function Block Execution Section 1 Basic Functions and Components

There are some limitations when using by_ref:
* Itis not possible to connect expressions or literals to a reference parameter.

* If areference parameter is not connected in one invocation, it cannot be
connected in other invocation (if the instance has multiple invocations).

* Itis not possible to read or write the parameter from outside the function block
(except in the invocation). The example expressions like fb.par_in := 2; or k :=
fb.par_out; are not allowed for reference parameters.

By using by_ref, it is still possible to use init values, in which case the init value is
the default value. If the parameter is not connected, the default value is used.

The code generated for connecting by_ref parameter is identical to an in_out
parameter; but they differ in what is allowed inside the function block.

For example, it is not allowed to write onto an in parameter regardless of whether it
is a reference or value parameter. The ownership analysis detects that a variable is
read only if an in parameter by reference is used instead of in_out. It is therefore
preferable to use direction=in and attribute=by_ref (instead of in_out), if the
parameter is actually an in parameter.

The In_Out parameters are passed by reference, and only a reference to the actual
variable outside the function block is passed to and from the function block. The
local representation of the parameter does not exist inside the function block.
Performing operations on an /n_QOut parameter inside a function block means
performing operations directly on the actual variable connected to the function
block. See also Connecting Variables to I/O Channels on page 122.

/ Function block \

code

varRef <q— -0 In_Out o<a—p VarRef

N /

Figure 24. In_Out parameter for a function block. This example illustrates how the
In_Out parameter points as reference to the value in the variable varRef.

72 3BSE035980-600 A

Section 1 Basic Functions and Components Control Module Execution

ﬂ A structured data type having components with reverse attribute must not be used
for communication between function blocks. The components with reverse
attribute does not work as intended when used with function blocks.

Control Module Execution

Control modules provide data flow-driven execution, which makes the code design
much easier for solutions where several types and formal instances are needed. All
control modules communicate with each other, and can therefore determine when
each individual instance can send and receive information. A data flow-driven
design prevents possible mistakes, when trying to foresee the correct execution
order, since the compiler rearrange or sort all the code behind the scenes. This is
called code sorting.

Direction for Control Modules

In control module types, a parameter can have any of the following direction:

. In
. Out
. In_out

* Unspecified.

These control module parameters follow different access rules from the code inside
the control module and offer limitations to the methods used to connect them.

All of them are passed by reference, which means only a reference to the actual
variable outside the control module is passed to and from the Control module.

The rules governing their functioning are as follows:

* Input parameters are read only.

* Out, In_Out and Unspecified are read and edit.

* Control modules on the same level can connect only In to Out.

* A sub control module inside could only connect its In parameters to In
parameters in the surrounding control module and so on.

* In_out must be connected to a variable (on any level). This is not the case if the
control module is used in FD code block in a diagram.

3BSE035980-600 A 73

Diagram Execution Section 1 Basic Functions and Components

V

* If the control module is used in FD code block in a diagram, the In_out
parameters can be connected to each other in FD code block. It is also possible
to connect one Out parameter to an In_Out parameter, and an In_Out to an In
parameter.

* One Out can be connected to Several In parameters. But, it is not possible to
have multiple data connections from the same source on control module
parameters of structured data types that have reverse components. See Table 9.

* A control module is allowed to write to an output parameter. An exception is
the case of output parameters that are of structured data type containing
components with the reverse attribute. It is an error if a control module writes
to a reverse component of an output parameter.

* A control module is not allowed to write to an input parameter. An exception is
that it is allowed for a control module to write to a reverse component of an
input parameter.

These rules apply to connecting parameters to communication variables as well.
Communication Variable In should be connected to In parameters and the
corresponding for Out. The compiler (and check) warns if rules are broken.

Unspecified parameters can be used without limitations for compatibility reasons.

For more information on Code Sorting, see the System 800xA Control AC 800M
Planning (3BSE043732%).

Diagram Execution

The execution of the content in a diagram or diagram type is mainly configured
using the Data Flow Order of different invocations within the FD (Function
Diagram) code block. The Data Flow Order is a number that specifies the intended
order of execution. In the FD code block, the Data Flow Order is given to invoke
functions, function blocks, diagram instances, control modules, code blocks, split
blocks and join blocks.

Control modules in a diagram are sorted based on access of variables to enable both
forward and backward calculations and data flows to be executed in the same task
scan. Therefore code blocks in invoked control modules will not always be executed
in the order specified by the Data Flow Order.

74

3BSE035980-600 A

Section 1 Basic Functions and Components Diagram Execution

The Structured Text and SFC code blocks can be defined without invoking them
from the FD code block. These code blocks are then sorted together with code
blocks of invoked control modules.

Direction for Diagram Types

In diagram types, a parameter can have any of the following direction:

. In
. Out
. In_out

The diagram type parameters are shown as ports when the type is instantiated in the
diagram editor.

All of them are passed by reference, which means only a reference to the actual
variable outside the diagram type is passed to and from the diagram type.

The rules governing their functioning are as follows:

* Each port has an attribute that determines if it is visible in the diagram or not.
* Input ports are shown on the left side.

* Output ports are shown on the right side.

* In_out ports are normally shown on both sides with a connecting line through
the block. They can also be shown on the left side only, depending on the
FD Port property on the corresponding parameter declaration.

e One Out can be connected to Several In parameters. But, it is not possible to
have multiple data connections from the same source on diagram type
parameters of structured data types that have reverse components. See Table 9.

* A diagram type is allowed to write to an output parameter. An exception is the
case of output parameters that are of structured data type containing
components with the reverse attribute. It is an error if a diagram type writes to a
reverse component of an output parameter.

* A diagram type is not allowed to write to an input parameter. An exception is
that it is allowed for a diagram type to write to a reverse component of an input
parameter.

3BSE035980-600 A 75

Single Control Modules Section 1 Basic Functions and Components

These rules apply to connecting the parameters to communication variables as well.
Communication Variable In should be connected to In parameters and the
corresponding for Out. The compiler (and check) warns if rules are broken.

Single Control Modules

A special kind of control module type, the single control module, provides a way of
grouping graphical instances, variables, parameters, and control modules into a
single unit.

Compared to the previous discussions about types and instances, a single control
module can be considered as a hybrid of them both (see Figure 25). First of all,
create a single control module as an instance under the control module folder (not
the control module type folder) in an application.

Once a single control module is created, it starts acting as both a type and an
instance. It contains code, editors for declaring parameters, function blocks,
instance information, etc. just like a regular type or instance. A single control
module can never be reusable as a type that can be used to create many instances.
However, it can be copied to a new single control module, and then be modified.

76

3BSE035980-600 A

Section 1 Basic Functions and Components Single Control Modules

Application)
Single Control Module
Control Module Types type
Control Modules IfAa =10then
B:=A+1;
end_if;

¢

object1
AlS
B|7

Figure 25. A single control module. This module is not reusable, hence intended to
be used only once for grouping instances into a single unit.

3BSE035980-600 A 77

FD Port Section 1 Basic Functions and Components

Single control modules can be used as a framework and attach control module
instances inside, like an application does with instances. Figure 26 illustrates this,
where three single control modules (Transport, Heating, and Crushing) form the
framework for the control modules (Motor_1, etc.).

=[] Libraries .
&[] Systemlib Fi)New Control Module x|
B E,MyMntanib Cantrol module type: Libraries/pplication:
@ Datka Types — .
£ Funiction Block Types [MillGrinderT ype MyMatorLib
=42k Control Module Types MillGrinderT ype
= % Millzrinder Type mymﬂtgﬁan:”ype
7k Transport {Single control module) ¥ ¥
IPE Heating {Single contral madule)
=] Crushing (Single control module)
=) ﬂ Motar_1 MyMotorType
P MotorPanel 1 MyMotorPanelType
=47 Mokor_2 MyMotorType
4P MotorPanel_L MyMaotorPanelType
El ﬂ Motor_3 MyMotorType —
- - I 7
I MotorPanel 1 MyMotorPanelType Instance name: |MilGirinder2 J
MyMokarPanelType [¥ Connect parameters
El % My Mokor Type
FFE MotorPanel_1 MyMotorPanelType Cancal |
Figure 26. Single control modules form the framework for the control modules
FD Port
The FD Port column appears in the editor for function block types, control module
types, and diagram types. This column is only significant for the types that are
instantiated in a Function Diagram (FD) code block.
The normal choice is Yes or No. The value specifies if the parameter shall be visible
when the function block type, control module type, or diagram type is instantiated in
an FD code block. The default value is Yes.
There are extra choices (Left or Right) for control module parameters with direction
unspecified and parameters with direction in_out. These choices are related to the
placement of the parameter port in the FD code block.
78

3BSE035980-600 A

Section 1 Basic Functions and Components FD Port

Unspecified parameters are placed on the left side by default, and in_out parameters
are placed on both sides by default.

There are some types with structured parameters that are mostly output, but also
contain some input components. Such a parameter must be either an Unspecified
parameter (control module types only) or an In_Out parameter.

The following list of alternatives are available for parameters of direction
unspecified:

No - Not visible as a port. The parameter will be placed on the left side of the
object if the user decides to show it later on.

No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on.

Yes - Visible as a port on the left side of the object.
Yes Left - Visible as a port on the left side of the object.

Yes Right - Visible as a port on the right side of the object.

The following list of alternatives are available for parameters of direction in_out:

No - Not visible as a port. The parameter will be placed on both sides of the
object if the user decides to show it later on.

No Left - Not visible as a port. The parameter will be placed on the left side of
the object if the user decides to show it later on.

No Right - Not visible as a port. The parameter will be placed on the right side
of the object if the user decides to show it later on. This is only available for
parameters of function block types.

Yes - Visible as a port on both sides of the object.
Yes Left - Visible as a port on the left side of the object.

Yes Right - Visible as a port on the right side of the object. This is only available
for parameters of function block types.

3BSE035980-600 A

79

Aspect instances Section 1 Basic Functions and Components

ﬂ It is not recommended to use a function block type parameter of direction in_out
with its FD Port property set to Yes Right. In this case, it is only possible to
connect this type of parameter to a variable, parameter, or
communication variable.
Therefore, it is recommended to use parameter with direction out and attribute
by_ref, instead of in_out with Yes Right option, so that this parameter can be
connected to input port of another object.

Aspect instances

Aspect instance is an attribute that decides whether the instance will be visible in
Plant Explorer, or not.

The instances not interacting with other instances in Plant Explorer should have the
aspect instance attribute set to False for not loading the Aspect Server performance.

ﬂ Function blocks and control modules created from Plant Explorer will be aspect
instances by default, regardless of the type is an alarm owner or not.

Set Aspect instance Attribute
To set the aspect instance attribute:

1. In Project Explorer, right-click the function block or control module and select
Properties > Aspect Object. Use the check box to set the attribute
(checked=True, unchecked=False).

Propetties ¥ Task Connection

5 Delete Del " 5=pect Ohject < Aspect Object True
atic = _1.Marmal)
Go ko r

Check

Figure 27. Aspect Object

Every time the Aspect Object menu item is selected, the aspect instance property
@ is toggled on/off (true/false).

80 3BSE035980-600 A

Section 1 Basic Functions and Components Variables and Parameters

Suppress Aspect Object (Set Attribute to False)

If the attribute is set to false, the instance will not be visible in Plant Explorer and no
live data can be fetched from the instance. If the instance has the aspect object
attribute set to false, it cannot be accessed from Plant Explorer.

If the aspect object attribute is set to false, added aspects will be deleted without
warning. Also, ensure that all editors are closed before changing this attribute in
Project Explorer, otherwise there is a risk that aspect object settings are
overwritten when the editor is closed.

Aspect Object (Set Attribute to True)

If the attribute is true, the instance will be visible in Plant Explorer (provided that
the surrounding type is not hidden or protected). See also Hide and Protect Control
Module Types, Function Block Types, Diagram Types, and Data Types on page 158.

Set Instantiate as Aspect Object Attribute for a Type

* In Project Explorer, right-click the type and select Properties > Instantiate as
Aspect Object. Use the check box to set the attribute (checked=True,
unchecked=False).

Variables and Parameters
Variables and parameters are the carriers of data throughout the system. This section
describes how to use parameters and variables in the best way possible:

* Variable and Parameter Concept on page 83 gives an overview of variables and
parameters and how they are used.

* Variables on page 84 gives an overview of the different variable types.

e Variable Entry on page 85 describes how to declare variables.

* Specific Initial Values on page 94 describes how to use specific initial values.
» External Variables on page 96 describes how to define external variables.

* Access Variables on page 97 describes how to define and use access variables.

3BSE035980-600 A 81

Variables and Parameters Section 1 Basic Functions and Components

Communication between Applications Using Access Variables on page 99 and
Communication in an Application Using Global Variables on page 100
describe how communicate between applications.

Communication Variables on page 101 describes how to define communication
variables.

Control the Execution of Individual Objects on page 113 describes how to use
variables and parameters to control the execution of objects.

Link Variables in Diagrams on page 116 describes the use of link variables for
graphical connections in diagram editor.

Project Constants on page 116 describes the use of project constants and how
to update them.

I/0 Addressing Guidelines on page 121 describes the rules for addressing I/O
channels.

Connecting Variables to I/O Channels on page 122 describes how to connect
I/O variables to I/O channels.

Extensible Parameters in Function Blocks on page 127 describes extensible
parameters (these can only be used in function blocks).

Keywords for Parameter Descriptions on page 128 describes keywords used in
description in editors to identify the function of a parameter.

Property Permissions on page 133 describes how to set permission for variables
and objects.

Property Attribute Override on page 134

82

3BSE035980-600 A

Section 1 Basic Functions and Components Variable and Parameter Concept

Variable and Parameter Concept

Variables

Variables are used in Control Builder to store and compute values.

Variables are the carriers of values at object level, application level, and network
level:

* Local variables — These are mainly used inside objects as carriers of local
values. They belong to the code and can only be accessed within the same
function block, control module, diagram or program.

* Global variables — These are declared in the application and holds values that
can be accessed by any object (function block, control module, or program) in
the application. However, to reach a global variable, each object that intends to
use a global variable must have declared a corresponding External variable, see
also External Variables on page 96).

e Access variables and Communication variables are used as carriers for
communication between several applications and controllers in a network:

— Access variables allow data exchange between controllers, that is, access
variables can be accessed by other controllers. See Communication
between Applications Using Access Variables on page 99.

— Communication variables are used for cyclic communication between
top level diagrams, programs, and top level single control modules.
Communication variables support both inter application communication
and inter controller communication in a system network. For more
information, see Communication Variables on page 101.

All variables are defined by their names and data types. The data type (dint, bool,
real, string, and so on) defines the characteristics of the variable.

Parameters

Parameters cannot store any values, but the variables are assigned to parameters of
function blocks, control modules, diagrams and functions. Variables store the value
of the corresponding (connection) parameters.

3BSE035980-600 A 83

Variables

Section 1 Basic Functions and Components

Use parameters for connecting objects and to point to variable values that need to be

read into code blocks and written from code blocks.

When function blocks read from a variable and write to a variable, they use input
and output parameters that temporarily copy the variable value, before and after

execution. In this case, one may claim that parameters can temporarily hold a
value. See Function Block Execution on page 71 for more details.

Variables

Table 5 lists available variables in Control Builder.

Table 5. Variable types in Control Builder.

Variable type Scope Where to declare

Local variable Object level. Can only be Application editor (for passing
accessed within the function | parameters between control
block, control module, modules) or,
diagram, or program in which | programs editor (for access in

Function block editor (for
access inside the function
block).

Control module editor (for
access inside the control
module).

Diagram editor (for access
inside the diagrams)

Global variable Application level. Can be In the application editor. See
accessed from anywhere in | also Communication in an
the code within an Application Using Global
application, except from Variables on page 100.
diagrams. An object that
intends to use a global
variable must declare an
external variable locally that
will point at the corresponding
global variable.

84 3BSE035980-600 A

Section 1 Basic Functions and Components

Variable Entry

Table 5. Variable types in Control Builder. (Continued)

Variable type

Scope

Where to declare

Access variable

Network level. Variable that
can be accessed by remote
systems for communication
between controllers. See also
Access Variables on page 97
and Communication between
Applications Using Access
Variables on page 99.

Access Variable editor of a
controller.

Communication
Variable

Network Level. Variable that
can be accessed by remote
systems for communication

Editor for top level Diagram,
Program, or top level Single
Control Module.

between applications and
controllers. See
Communication Variables on
page 101

Variable Entry

Control Builder helps the user to declare variables in applications, programs,
function block types and control module types. This section covers the entries:
Name, Data Type, Attributes, Initial Value and Description.

Name

It is recommended that variables are given simple and explanatory names, and that
they begin with a capital letter. Names consisting of more than one word should
have capital letters at the beginning of each new word. Examples of recommended
variable names are DoorsOpen, PhotoCell.

Certain names, however, are reserved by the system and cannot be used for other
purposes, for example true. An error message appears if such a word is used. For
naming guidelines and information on relevant tools, refer to the System S00xA
Control AC 800M Planning (3BSE043732%).

3BSE035980-600 A 85

Variable Entry Section 1 Basic Functions and Components

Data Types

A data type defines the characteristics of a variable type. There are both simple and
structured data types in Control Builder. A variable of simple data type contains a
single value, while a structured data type contains a number of components of
simple or structured data types.

Table 6 presents the most common simple data types and the initial value when the
variable is declared.

Table 6. Simple data types

Data type Description Bytes aII_ocated Initial value
by variable (default)
bool Boolean 4 False, 0
dint Double integer 4 0
int Integer 4 0
uint Unsigned integer |4 0
string(” Character string(z) 10 bytes + string “
length [n]
word Bit string 4 0
dword Bit string 4 0
time Duration 8 T#0s
date_and_time(!) |Date and time of |8 1979-12-31-
day 00:00:00
real® Real number 4 0.0

(1) Itis allowed to use variables of string and date_and_time also in SIL3 applications; however, the
result must never influence the safety function of a SIL certified application. The variables
cannot be send via safe peer to peer MMS, as SIL data.

(2) String length is 40 characters by default, but can be changed by entering string[n] as the data
type, where n is the string length. The number of bytes allocated for string[40] will be (40 +10)
50. The maximum string length is 140.

(3) Implemented according to IEEE 754, single precision floating point. See Real value in AC 800M

on page 129.

86

3BSE035980-600 A

Section 1 Basic Functions and Components Variable Entry

Comparison of variables of unsigned data types (uint, word, and dword) will not

@ work properly if the most significant bit is set. Internally, they are handled as
signed, where the most significant bit is used as the sign. This means that a word
variable with a value above 32767 will be considered to be smaller than a word
variable with a value below 32768.

When declaring variables or parameters of the data type string, always define the
required length within square brackets (for example, string[20]), to minimize
allocated memory. If the string length is not defined, then Control Builder
automatically allocates memory for a 40 character string length.

Use variables of data type string with care. Strings occupy a great deal of
@ memory, and require much execution time to be copied or concatenated.

A structured data type contains a number of components of simple or structured data
type. For bidirectional communication using structured data types, a reverse
attribute must be set to indicate which components communicate in the opposite
direction (see also Bidirectional Communication Variable on page 107).

There are a number of predefined data types in Control Builder (for example
BoolIO and ReallO) that are structured data types. User-defined structured data
types can also be created, see Decisions When Creating Types on page 64.

ﬂ The word “default” can be used as an initial value for a parameter in a control
module type or diagram type. This works for both simple and structured data
types. For a structured data type, the initial value “default” gives the default value
of the data types for all components.

This is useful when creating types; for input parameters of a structured data type
that do not have to be connected, and for output data types that do not have to be
connected.

More information is given in Control Builder online help. Search the index for
@ “structured data type”.

3BSE035980-600 A 87

Variable Entry

Section 1 Basic Functions and Components

Attributes

Attributes are used to define how variable values should be handled at certain
events, such as after cold restart, warm restart, etc. Variables that are supposed to
hold values over several downloads must for example, have a retain attribute in
order to keep their values after a warm start. Any of the attributes in Table 7, can be
given to a variable. For parameter attributes see Table 8.

Table 7. Variable attributes

Name

Description

no attribute

The variable value is not maintained after a restart, or a download of
changes. Instead, it is set to the initial variable value. If the variable
has no initial value assigned, it will be assigned the default data type
value, see Table 6 on page 86.

retain

The variable value is maintained after a warm restart, but not after a
cold restart. Control Builder sets retain on all variables by default. To
override this, the attribute field must be left empty in declaration pane.

coldretain

The variable value is saved in the aspect directory, and retained after
warm or cold restart.(

Coldretain overrides the retain attributes in a structured data type.

constant

The user cannot change the value online once assigned.

This attribute overrides the coldretain and retain attributes in a
structured data type.

hidden

The variable will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

88

3BSE035980-600 A

Section 1 Basic Functions and Components Variable Entry

Table 7. Variable attributes (Continued)

Name

Description

nosort

This attribute suppresses the code sorting feature for control module
types. It is advisable not to use the nosort attribute if the user do not
know the data flow characteristics in detail.

state

This attribute will let the variable retain its old value between two
scans for control module types. The old and new value can be read by
adding :old and :new to the variable name. When a variable of state is
declared will there automatically be an invisible code block created
there the state variables handles in following way:

Variable:old := Variable:new. These code blocks always execute firstin
an 1131 task. This means that the state variables, :new and :old
always is equal when the first user defined code block starts to
execute. Only the first change during code execution could be
detected.

State variables are for breaking genuine sorting loops.

Not genuine sorting loops shall been handled by divide up the code
block in two parts.

The :new variable is default when writing to, or reading from state
variables. Therefore is it recommended to write both :new and :old in
the 1131 code since it will be much easier to understand which
variable that concerns.

It is not possible to detect changes on state variables between
executions as they are equal when the code execution starts.

(1) When an application is downloaded the very first time, variables will get their initial data type
values, even though they have been declared with the attribute coldretain, and, that the controller
has done a cold restart. Hence, no variables can receive their coldretain values before they have
been stored in the aspect directory. Correspondingly, will variables that have been declared later
on, contain their initial values until they have been saved in the aspect directory.

3BSE035980-600 A

89

Variable Entry

Section 1 Basic Functions and Components

Table 8. Parameter attributes

Name

Description

no attribute

The parameter value is not maintained after a restart, or a download
of changes. Instead, it is set to the initial parameter value. If the
parameter has no initial value assigned, it will be assigned the default
data type value, see Table 6 on page 86.(1)

retain

The parameter value is maintained after a warm restart, but not after a
cold restart.()

coldretain

The parameter value is saved in the aspect directory, and retained
after warm or cold restart.()

Coldretain overrides the retain attributes in a structured data type.

hidden

The parameter will be hidden for an OPC client connected to an OPC
server for AC 800M. This attribute is used for variable values not
necessary to a supervisory system.

by_ref

This attribute is used for controlling the passed value. For in and out
parameters the value is usually copied into the called instance at the
invocation. But for non simple data types and strings it is time
consuming. In that case, a reference to the data instance is passed in
the function block call. This is achieved by setting the attribute of the
parameter to by_ref.

(1) These attributes are valid if the parameter is not connected, if connected it is the attributes of
connected variables.

In case of power failure, SIL3 applications are restarted using cold retain marked
values which are periodically saved in the controller with a cycle time set by the

user.

Coldretain is not allowed in SIL3 application on restricted parameters. This could
lead to a failing coldretain save and that the controller shuts down after a power
fail restart. A system alarm is generated if coldretain fails and the controller log
gives information on the problematic POU and variable.

90

3BSE035980-600 A

Section 1 Basic Functions and Components Variable Entry

ﬂ It is possible to assign several attributes to a variable for example, retain, nosort,
and hidden can be assigned as (retain nosort hidden) attribute.

ﬂ An intermediate variable (a variable which is automatically generated when
making a graphical connection between function blocks) in FBD or LD is always
assigned the attribute retain (even if the parameters on both sides of the graphical
connection have the attributes coldretain).

In addition to the general attributes, the data type editor supports two special
attributes for the components (see Table 9).

Table 9. Special attributes for data types

Name Description

displayvalue This attribute is applicable for a component in a structured data
type, which is used in the FD code block of a diagram. In the
FD code block, the online value label is not shown for graphical
connections of structured data type. However, if one of the
components of the structured data type is marked with the
displayvalue attribute, the online value label is shown for this
component.

Note: The displayvalue attribute can be assigned to only one
component in a structured data type. It also possible to assign
this attribute through a combination of other attributes

(for example, coldretain displayvalue, nosort retain displayvalue,
and so on). In this case also, only one component can have this
type of attribute (with displayvalue).

If a nested structured variable is used, the displayvalue attribute
is needed on each level down to the value that should be
shown.

3BSE035980-600 A o1

Variable Entry

Section 1 Basic Functions and Components

Table 9. Special attributes for data types

reverse

The reverse attribute can be used while declaring sub elements
in a structured data type. This attribute is used when declaring
structured data types that are intended to represent a
connection between different program organization units in the
applications. The signals in the connection can pass data in
different directions, and the reverse attribute specifies that the
direction of this signal (component) is opposite to the normal
flow (forward or backward).

It is an error if a sub element of a structured data type has the
reverse attribute and the sub element itself is of a structured
data type containing a reverse attribute at any sub level in that
sub element.

The reverse attribute affects the usage of control module
parameters, diagram parameters and communication variables.

Note: All components that have the reverse attribute must be
placed consecutively in the data type editor.

Restrictions with reverse attribute for Split and Join blocks
in FD code block

In the FD code block in Diagram and Diagram Type POUs, the
Split and Join blocks must not be used for structured data types
with reverse components.

Restrictions with reverse attribute for function blocks

If structured data type is used for communication between
function blocks, ensure that the type does not contain any
reverse components.

Restrictions with reverse attribute for data exchange
between control modules or diagrams using Access
Variables

It is also not possible to write to out direction variables using
Access Variables in Structured Text, even if the attribute is
reverse.

92

3BSE035980-600 A

Section 1 Basic Functions and Components

Variable Entry

Attribute Example

The following example tries to illustrate how a variable will be handled, depending
on different attribute settings. Suppose the variable valveC has the attribute

coldretain, valveR has the attribute retain and valve has no attribute. Also, suppose
that these three variables have the initial value = True (see Figure 28 for the variable

declaration).
Mame Data Type Attributes Initial “alue
1 |valweC biool coldretain true
2 |valveR biool retain true
3 |valve biool true
4

Figure 28. Three variables with different attributes settings

According to the attribute settings in Figure 28, the variables will be read or written
on different occasions in the given code example below, (read the comments under
each IF statement):

IF valveC THEN
(*Code in this position is only executed once after the very
first cold restart¥*)
valveC := false;
END_IF

IF valveR THEN
(*Code in this position is only executed once after a cold
restart*)
valveR := false;
END_IF

IF valve THEN
(*Code in this position is only executed once after a cold restart
and once after a warm restart¥*)
valve := false;
END_TIF

Note that execution does not have to take place during the first scan after restart, for
example, when IF valve is embedded in another IF statement.

3BSE035980-600 A 93

Specific Initial Values Section 1 Basic Functions and Components

Variables and parameters should have the attribute retain, unless they are written at
each scan. When a change has been made to the application, the entire application
will be (warm) restarted and in doing so, variables without the attribute retain will
be set to their initial values, and there is a chance that the change will not be totally
bumpless. It is recommended that In and Out parameters to function blocks always
have the attribute retain.

More information is given in Control Builder online help. Search the index for
“attribute”.

Initial Values

It is possible to give the variable an initial value, which will be assigned to the
variable the first time the application is executed. This setting overrides the default
data type value. Table 6 shows default initial values for the most common data

types.

Descriptions

The description field describes and provides information about the variable. A short
descriptive text may include an explanation of the cause of a condition or a simple
event, for example “Pump 1 is running”. Since the description is not downloaded to
the controller, the size of the description is irrelevant.

Specific Initial Values

In the Control Properties aspect, the user has the possibility to set instance-specific
initial values for variables and parameters in a POU that are different from the ones
defined for the type. These values are compiled and applied to the instances when
Control Builder downloads the project to the controllers. Specific initial values can
be set for the following types of objects in the Control Structure:

* Applications (for variables and global variables),

* Program (for variables)

* Single control modules (for variables and parameters that are default-marked
and not connected)

* Control modules (for variables and parameters that are default-marked and not
connected)

94

3BSE035980-600 A

Section 1 Basic Functions and Components Specific Initial Values

* Function blocks (for variables and parameters with direction in or out, but not
for the direction in_out)
* Diagrams and instances of diagram types

Set Specific Initial Values

Specific initial values are set in Plant Explorer, via the Control Properties aspect in
the Control Structure. To enter an initial value:

1. Select the Control Properties aspect for the object.
2. Select the Properties tab.

3. Select the corresponding item with the Init_Val suffix, then enter the initial
start value in the Property Value field.

4. Click Apply.

If Control Builder finds errors when compiling instance-specific initial values
before download, Control Builder presents a dialog where errors can be corrected.

Priority Order

Initial values are applied in the following order:

1. Coldretain value from the latest saved set.

2. Instance-specific initial value (init_Val property).
3. Initial value declared in the type.

4. Default value of the data type.

3BSE035980-600 A 95

External Variables

Section 1 Basic Functions and Components

Retain Attributes—Effect on Initial Values

The retain attribute decides how initial values are applied.

Table 10. Application of initial values, depending on retain attributes.

Initial Value Applied

Attribute Situation (_Init_Val)
No attribute Cold restart download Yes
Warm restart download Yes
Retain attribute Cold restart download Yes
Warm restart download No

ColdRetain attribute

Init_Val will be applied at the very first download.

For all other situations, Init_Val will not apply if
there are saved coldretain values.

External Variables

External variables are not really variables, in the sense that they carry a value.
Instead, external variables work like parameters, that is, they point to a variable
value (in this case a global variable). In order for an object to reach a global variable
(located at the top of the application) it must use a pointer, or more specifically, an
external variable. By declaring an external variable inside an object, it is possible to
access global variables efficiently from a deep code design, without having to pass
variable values through parameters.

96

3BSE035980-600 A

Section 1 Basic Functions and Components Access Variables

variable z

.\lparameter z
- parameter z
—

—~—

parameter z
—~

value of z

variable z [global]

{ 3

-
~

—
~
~

™ @ valueofz
[external]

Figure 29. The variable z can be accessed deep down in the structure, using several
parameters. (Bottom): Using external (and global) variables, the variable z is
accessed directly, without having to use parameters.

Access Variables

Access variables are needed when the system works as a server. Allowed protocols
are MMS, COMLI, MODBUS TCP and SattBus. MMS and SattBus variables are
declared in the Access Variable Editor under the corresponding tab, COMLI and
MODBUS TCP variables under the Address tab. The variable name must be unique
within the physical control system.

Open the Access Variable Editor by right-clicking the ‘Access Variables’ icon under
the respective Controller and select Editor.

To limit the access to a variable, set the attribute to ReadOnly. If the attribute is
@ left blank, it is possible to both read and write.

Set the Attribute to 'ReadOnly' if the connected variable is located in a SIL

ﬂ application. A compile error is shown if the ReadOnly attribute is not set. And for
the Address tab (that has no attribute column) it is allowed to connect the access
variable to a SIL variable, but the variable is implicitly ReadOnly. A client that
tries to write to the access variable will get a runtime error (or a controller
shutdown if the controller is pre SV6.0).

3BSE035980-600 A 97

Access Variables Section 1 Basic Functions and Components

MMS
MMS variables can only be accessed by name.

An MMS access variable name can be up to 32 characters long and contain letters,
digits and the characters dollar($) and underscore(_). However, an access variable
name cannot begin with a digit or the dollar ($) character.

All data types for single and structured variables are allowed, with the exception of
ArrayObject and QueueObject.

To limit the access to an MMS variable, set the Attribute to ReadOnly. If the
attribute is left blank, both read and write is possible.

SattBus
SattBus variables can be accessed in three ways:
e Standard SattBus name such as Valve:

— the name must consist of exactly five ASCII characters, but may not begin
with a percentage sign (%).

* COMLI direct addressing (see Address),
* JEC 61131-3 standard representation for variables.
— IEC61131-3 address must be entered under the COMLI tab

Allowed data types for a single variable are, bool, dint, int, uint, real or string.
Whereas a structured variable does not allow string data type.

Address

Address variables can be accessed in two ways only, either direct addressing with
capital X and the number for boolean, or capital R and the number for registers (RO-
R65535 for PA controller and 65000 for HI controller) beginning with a percentage
sign or not, or according to IEC 61131-3 standard representation for variables.

Allowed data types for a single variable are bool, dint, int, or uint, whereas
structured variables must all be of same data type. A structured variable is allowed
to contain more than 512 booleans and contain more than 32 components of integer
data type. Overlapping areas are not allowed.

98

3BSE035980-600 A

Section 1 Basic Functions and Components Communication between Applications Using Access

Example

An access variable name "X0" is defined and connected to a variable which contains
544 Boolean components at octal address 0-1037. The next available address is then
1040 to ensure that areas do not overlap.

At least one of the variables in the access variable table has to be defined. For
missing variables, requested data of boolean data type will be returned with the
value False and requested data of integer data type will be returned with the value
"0". Writing to undefined variables is ignored.

Communication between Applications Using Access Variables

Two applications may communicate with each other via variables, but these
variables must be declared as access variables (see, Access Variables on page 97).
This also applies when two applications are downloaded to the same controller (see

Figure 30).
Controller Controller 1 Controller 2
Application 1 dle
> Application Application
Application 2

Figure 30. Variables for communication between applications must always be
declared as access variables.

When transferring access variables, it is important to use the same data type range
for the client (dint), as for the server (dint).

It is, however, possible to connect variables with different ranges, such as a dint
variable on the server and an integer variable on the client.

3BSE035980-600 A 99

Communication in an Application Using Global Variables Section 1 Basic Functions and

As long as the variable values are within the range of an integer, this will work, but
once the value goes outside the integer range, it will not.

If an access variable is the only user of a variable that is connected to an I/O
channel, this variable is by default updated every second. To update this variable
with another interval, create a statement that involves the variable, but is never
executed.

A statement that is never executed, but still updates the variable x could look like
this:
if false then
X:=X;
end_if;

Connect this program to a task that executes with the desired interval. The
variable is updated every time the task is executed.

Communication in an Application Using Global Variables

In Programs

Global variables are declared at application level, in the Global Variables tab of the
application editor. They can be accessed directly, without any declaration in the
program editor. Variables that are not declared in the declaration pane in the
program editor are assumed to be global variables. A global variable can be used in
any program, without having external variables declared in a program.

In Function Blocks or Control Modules

In order to reach a global variable from either a function block type or a control
module type, each type must have either an external variable declared or a

parameter. Thus, the types access the global variable value by using an external
variable or a parameter to point at the global variable located in the application.

100

3BSE035980-600 A

Section 1 Basic Functions and Components Communication Variables

Communication Variables

The communication variables are used for cyclic communication between top level
diagrams, top level single control modules, and programs, in the system network
that uses MMS communication protocol.

ﬂ Communication variables can be used in SIL 1-2, SIL3, and Non-SIL
configurations.

Communication variables are declared in the Program editor, top level Single
Control Module editor, or top level Diagram editor. Communication variables
support both inter application communication and inter controller communication in
a system network.

Communication variables are not supported in distributed applications. If an
application that contains communication variables is running in a controller, it is
not possible to download the same application to another controller.

It is possible to change the placement of the variable port for a communication
variable reference object in a diagram, from left to right and vice versa. This is
needed to read data from an out-variable.

A communication variable can be either a communication input variable or a
communication output variable.

If the direction of a communication variable is in in a POU, the POU can read the
variable, but cannot write to the variable. If the direction of a communication
variable is out in a POU, the POU can write to the variable and read the variable.

A communication variable can be either an elementary type or a structured data
type. It cannot be a generic or built-in type.

If a communication variable is of structured data type, it must not contain
@ components that are declared with the CONSTANT type qualifier and it must not
contain CONSTANT components at any sub-level of the variable.

Communication variables use a name based resolution to connect a communication
output variable to one or several communication input variables.

In a system network with Non-SIL configuration, all communication output
variables must be declared with unique names.

3BSE035980-600 A 101

Communication Variables Section 1 Basic Functions and Components

In a system network with SIL1-2 or SIL3 configuration, all communication output
variables must be declared with unique names and unique IDs.

Communication variables cannot be connected to the channels of an I/O unit.
Therefore an application code has to be entered to transfer values between
communication variables and local variables, which are connected to I/0.

102

3BSE035980-600 A

Section 1 Basic Functions and Components Communication Variables

Declaration pane for communication variable
The declaration pane for communication variables consists of:
* Name

The name of the communication variable. For communication output variables
(direction - out), the name must be unique on the network to resolve the
IP-address during compilation.

* Data Type

The supported simple data types are Bool, Dint, Uint, Int, Dword, Word, Real,
and String. The data types Time and Date_and_time are also supported. The
string data type is not used in SIL3 communication and it is not allowed to
declare a communication variable of type string in SIL3 or with Expected SIL
set to SIL3.

Structured data types having components of simple data types are also
supported, with maximum size of 1000 components or 1400 bytes for non-SIL
communication, and 78 bytes for SIL. communication. Each component
occupies different size depending on type (bool 1 byte, uint int word 2 bytes,
dint dword real 4 bytes). In SIL, all components of the structured data type
must have a configured ISP value.

Communication variables can consist of structured data types that are nested in
several levels.

J Attributes

Possible attributes to specify are:
— retain

— coldretain

— hidden

— hidden retain

— hidden coldretain

If no attribute is specified when the communication variable is declared,
retain is filled in automatically by the editor.

. Direction

The possible values are in or out. If no direction is specified when the
communication variable is declared, in is automatically filled in by the editor.

3BSE035980-600 A 103

Communication Variables Section 1 Basic Functions and Components

Initial Value

An initial value is assigned to the variable when the application is executed first
time. This setting overrides the default data type value.

In a SIL application, ISP Values are set initially instead of the Initial Value.
ISP Value

Applicable only to communication input variables. This field defines the ISP
(Input Set as Predetermined) value to be set for the in variable. This value can
only be set for simple data types. For non-SIL applications, if no ISP value is
specified, the default value is the last good value, or if no last good value exists
(because of no communication), the init value is applied.

ISP values are mandatory in SIL applications.

For structured data types, the ISP values can only be set in the data type for
each individual component (in the Data Type editor). Hence, it is not possible
to configure instance specific ISP values for structured data types.

ISP could be used in a structured variable to detect communication failure or
bad quality, by using a Boolean Valid component with ISP set to false.

Interval Time

Communication cycle time for peer-to-peer communication. The possible
values are fast, normal, slow, very fast, and very slow. The default value is
normal.

The time interval (in milliseconds) for each of these cycle times is defined in
the hardware editor for IAC MMS in the Control Builder. The IAC MMS
object is located at position 5.1 under the controller object in the hardware tree
in Control Builder.

IP Address

Applicable to communication input variables, and also applicable for
communication output variables if bidirectional. This field defines the IP
address of the controller that contains the corresponding communication output
variable (with the same name) in any of its applications.

When no value for the IP address is entered, the editor automatically fills in the
default value auto. This means that the IP address is resolved during
compilation.

104

3BSE035980-600 A

Section 1 Basic Functions and Components Communication Variables

However, it is not possible to resolve the [P-address during compilation if the
in- and out-variable resides in different 800xA systems in the network.
The IP-address must then be entered manually in this column.

e Unique ID

Applicable to SIL applications. It is also applicable in a non-SIL application,
when reading data from higher SIL. Unique ID is an integer (32-bit unique
identifier) that logically connects an in variable to an out variable. Ensure that
the value of the UniquelD is unique on the entire network. An in variable with
a certain UniquelD can only read from an out variable with the same
UniquelD. This field therefore provides an additional safety feature, apart from
the unique name of the communication variable. The default value for Unique
ID is 0. This value is not accepted for SIL communication, and valid value for
the unique ID must be set.

Even if the in variable is located in a SIL3 or SIL2 application and the out
variable is located in a non-SIL application, the Unique ID must be specified
for the SIL3 or SIL1-2 communication variable.

Even if the in variable is located in a non-SIL application and the out variable
is located in a SIL3 or SIL2 application, the Unique ID must be specified at
both ends.

* ExpectedSIL

Applicable to communication input variables, and also applicable for output

variables if bidirectional. ExpectedSIL specifies the expected SIL of the server

application that holds the output communication variable. The client checks if

the ExpectedSIL matches with the SIL in the received response (if included).

The following values can be selected for ExpectedSIL:

— Same - can only be used if client and server have the same SIL. This is the
default value.

— Non-SIL - used if in variable is located in SIL2 or SIL3 and out variable
is in non-SIL.

— SIL2 - used if in variable is located in non-SIL or SIL3 and out variable
is in SIL2.

— SIL3- used if in variable is located in non-SIL or SIL2 and out variable
is in SIL3.

3BSE035980-600 A 105

Communication Variables Section 1 Basic Functions and Components

Acknowledge Group

Applicable to communication input variables, and also applicable for output
variables if bidirectional. Acknowledge group is used to categorize the
communication variables in different groups for acknowledgement purpose
after their ISP values get latched. This avoids unexpected restart of
communication after fault detection. The possible settings are auto or a

group ID.

— auto - The communication resumes automatically after the error situation
is resolved. This is the default value for non-SIL applications.

— Specifying a group ID - This enables the communication variable for an
acknowledgement after fault detection. For SIL1-2 or SIL3
communication, the default value is zero, which is not allowed in a SIL
application. Therefore, it is mandatory to configure the Acknowledge
Group to a value (either auto or a specific group ID). If a group ID is
specified, the acknowledgment is performed through the CVAckISP
control module, for a particular group or cascaded groups.The CVAckISP
control module is available in BasicLib.

A maximum of 32 Communication Variables can be grouped together with the
same group ID per application. This is also checked during application
compilation.

One control module instance of CVAcKISP is used to reset all the latches in one
group of communication variables. If several such groups are to be reset
simultaneously, the control module instances of CVAcKISP for each group may
be interconnected in a cascade configuration. The reset order is distributed to
all members in the configuration.

Description

User documentation of the variable.

Source and Sink for Communication Variables

The term ‘source’ is used for the POU that declares a communication output
variable. The term ‘sink’ is used for the POU that declares a communication input
variable.

If a sink is located in one application, a source can be located in any of the
following:

106

3BSE035980-600 A

Section 1 Basic Functions and Components Communication Variables

* In the same application as the sink.

* In another application but in the same controller as the sink.
* In another application and in another controller.

Multiple sinks can be linked to the same source.

For example, for every communication output variable with a unique name, there
can be multiple communication input variables with the same name as the
communication output variable. The communication input variables can reside in a
different POU, in a different application, or in a different controller.

There is no need to declare the location of the source (communication output
variable) while configuring the sink (communication input variable). This is because
the binding between them is based on the name of the communication variable.

The Control Builder checks whether the name of a communication output variable
is unique in the 800xA System, only during the download of the application. The
download is aborted if the variable name is not unique.

Unresolved Communication Variable

A communication input variable is unresolved if there is no communication output
variable (source) with the same name, during compilation.

ﬂ The Control Builder allows the execution of an application that contains
unresolved communication variable. When a re-configuration of the system is
done (for example, at a warm restart), the source can be created and the
unresolved communication variable becomes resolved.

A resolved communication variable does not become unresolved if the source is
removed. It gets unresolved the next time, when that particular application is
reconfigured.

Bidirectional Communication Variable

Bidirectional communication variables have communication in both directions and
can be configured for one-to-one connections only. These variables can be created
for structured data types only.

3BSE035980-600 A 107

Communication Variables Section 1 Basic Functions and Components

The configuration parameters that are used for the in variables can also be specified
for the out variables, if bidirectional. This allows the configuration of a
communication variable with a different communication setup in either directions
(for example, different interval times).

Reverse attribute

For bidirectional communication using structured data types, a reverse attribute
must be set to indicate which components communicate in the opposite direction to
the in/out declaration of the communication variable.

The reverse attribute is configured in the data type editor.

The reverse attribute can only be set such that all in variables are located
consecutively and also all out variables are located consecutively in memory.
Hence, it is not possible to configure reverse for every other component in a data

type.

The reverse attribute can be set in both top level and sublevel of a structured data
type, but cannot be nested.

This means, the reverse attribute cannot be set for a structured data type component
Struct2 inside a structured data type Structl. But, Struct2 can have reverse
components inside it.

For example, for a ControlConnection data type, which consists of one forward
structure and one backward structure, the reverse attribute is set on the whole
backward structure. All components in the backward structure inherits the reverse
attribute automatically.

Interval Time

Out of the five different cyclic categories (VerySlow, Slow, Normal, Fast, VeryFast),
the default interval time for a communication variable is Normal.

The interval time for a communication variable can be changed only when the
Control Builder is offline. The changes takes effect during the download.

The time interval (in milliseconds) for each cyclic category is defined using the
hardware editor for JAC MMS. The IAC MMS object is available at position 0.5.1
under the controller object. Position 5 contains the IP object.

108

3BSE035980-600 A

Section 1 Basic Functions and Components Communication Variables

Hardware Simulation with Communication Variables

It is possible to use hardware simulation for IAC, except when the client is a real
(non-simulated) HI controller.

A HI controller, which is a non-simulated IAC client, only accepts data from a
non-simulated server and that is not a soft controller. If a server is found to be
simulated, ISP is set for the communication variable.

In a PA controller, which is an IAC client, the data from a simulated server is copied
in to the application, but the status of the communication variable shows that the
server is simulated.

When using hardware simulation, the communication variables use real
communication and real copying of input variables. This is also the case when
downloading a simulated AC 800M to a Soft Controller.

Application Download

The communication variable configuration is downloaded when the application is
downloaded to the controller. It is possible to download an unresolved In (or
bidirectional) communication variable, even though the communication will not
happen. To resolve an unresolved communication variable that already exists in a
controller, the new configuration with the Out variable must be downloaded.

When an out variable is removed, only in variables that are defined in applications
which are downloaded, shows communication variables as unresolved. Other
communication variables (in other applications) will timeout.

To support multi user engineering, all the affected controllers are reserved during
last step of the communication variable analysis, until the configuration is
downloaded.

3BSE035980-600 A 109

Communication Variables Section 1 Basic Functions and Components

Communication from Lower SIL to Higher SIL using Diagrams

For communication between different applications, the only way to use a signal
from a server application with lower SIL (lower than the SIL of the client
application) is by using a graphically connected communication variable reference
in the FD code block of a top level diagram. This means that the FD code block in a
diagram is the only code block in Control Builder that supports a lower SIL signal
input.

Compared to an ordinary communication variable reference, there are two
differences for this type of communication variable:

* Itis displayed in yellow.

* The Expected SIL value is also displayed as a label below the object.

The indication is shown in both Offline and Online modes.

add:1
cvlowerSIL add
gint e—0— N1 —
ManSIL wl= N2

Figure 31. Communication variable with lower Expected SIL displayed in yellow

Communication Variable Limits Dialog

This dialog enables to modify compiler settings related to restrictions of
Communication Variable usage. Select Settings - Communication Variable
Limits in the context menu of the Project object to open the dialog. The following
dialog is displayed.

110 3BSE035980-600 A

Section 1 Basic Functions and Components Communication Variables

r ~
m Communication Variable Limits ﬁ

Compiler reaction for unresolved communication variables
() Warning

(@) Error

Generate compilation error if the number of communication variables exceeds:
32 per diagram

[1024 per application

100 with direction out per SIL2 application

[200 with direction in per SIL2 application

50 with direction out per SIL3 application

Ok

[Cancel

Figure 32. Communication Variable Limits Dialog

The dialog consist of two sections:
— Compiler reaction for unresolved communication variables

— Generate compilation error if the number of communication variables
exceeds

The Compiler reaction for unresolved communication variables settings is related to
a compiler check. The check cannot be turned off, but can only choose between
compilation warning or compilation error. See Unresolved Communication Variable
on page 107 for information about unresolved variables.

All the settings in the Generate compilation error if the number of communication
variables exceeds section are related to different compiler checks. Each check can
be turned off separately. Compiler errors are generated if the settings are enabled
and the number of Communication Variables! exceeds:

— 32 per diagram
— 1024 per application

1. This is the sum of internal and external Communication Variables, see Communication Variables on page 343.
A Communication Variable may include one or several components.

3BSE035980-600 A 111

Communication Variables Section 1 Basic Functions and Components

Example of the generated Communication Variable compiler error:
Too many communication variables in application (Max: 1024
Used: X)

ﬂ The purpose of the limit of Communication Variables per diagram is to guide the
user to avoid large and complex diagrams.

Exceeding 1024 Communication Variables per application might risk the general
@ execution stability of the controller, and it is not recommended to disable this
check.

For SIL applications there are additional configurable checks in the dialog for the
number of Communication Variables:

— 100 with direction out per SIL2 application
— 200 with direction in per SIL2 application
— 50 with direction out per SIL3 application
— 100 with direction in per SIL3 application

Communication Variables communicating between different IEC 61131-3 SIL tasks
(same or different controllers) affects the IEC 61131-3 execution time, due to the
IAC fast data copying. If the number of Communication Variables checks per SIL
application is exceeded, this means that the IAC copy makes up a significant part
(more than 10%) of the recommended maximum IEC 61131-3 execution time 100
ms. Note that higher prioritized IEC 61131-3 tasks cannot interrupt a lower
prioritized IEC 61131-3 task during IAC fast data copy.

If the impact on the IEC 61131-3 execution time due to a high number of SIL
ﬂ Communication Variables is per design of the project, and a proper task tuning

using the Task Analysis tool is performed, then the compiler checks of

Communication Variables per SIL application can be disabled.

112 3BSE035980-600 A

Section 1 Basic Functions and Components Control the Execution of Individual Objects

Control the Execution of Individual Objects

Sometimes there is a need to execute specific sub function blocks and/or sub control
modules, with a time interval and priority different from the task connected to the
application. Depending on the requirement, this can be done in two ways:

1. To create a new task and connect this task to all the following objects, read the
sub-section 'Using a Global Variable Connected to an External Variable on
page 113.

2. To choose a new task for each individual object (and for that object only), read
the sub-section 'Using a Global Variable Connected to a Parameter on page
114.

Using a Global Variable Connected to an External Variable

Assume that the user has added a new task, for example SuperFast, to the other
tasks in the Project Explorer.

Steps to use global variable:

1. Declare a global variable (for example Speed) of data type string, with the
attribute constant and the initial value 'SuperFast'.

2. To reach objects that have been created in the application, start by declaring an
external variable in the type (open the type editor and select the external
variable tab).

3. Declare an external variable with the same name, data type and attribute as the
global variable. In this example, an external variable called Speed of data type
string and with the attribute constant is used.

Finally, connect the new task SuperFast to the object by right-clicking the object
and selecting Task connection. Type the variable name Speed in the task field. All
the following objects that are created will have this task connection, that is,
SuperFast.

The advantages with this method of using a global variable connected to an external
variable (declared in the type) is that every following object will be connected to the
same task (SuperFast). If the user later on need to change the task connection for all
the objects (perhaps hundreds of objects), change only the initial value for the global
variable in the application (see Figure 33). The present task connection for all

3BSE035980-600 A 113

Control the Execution of Individual Objects Section 1 Basic Functions and Components

objects will point, via the external variable to the task declared by the global

variable.
Tasks Global variable
SuperFast — 2/” Speed initial value = ‘SuperFast’
R
_ - /
Fast - ////// type
@ P p - g External
N 7 s variable = Speed
ormal e P y,
@ y 4 , / objects
Slow - y, Task connection = Spged
t y Y on the first created object.
/
/ Current task is SuperFast /
SuperSlow for all following objects.

/
St
Figure 33. All objects will have the same task connected (SuperFast), once the first
object has connected Speed.

Using a Global Variable Connected to a Parameter

Assume that the user has added a new task, for example SuperSlow, to the other
tasks in the Project Explorer.

The main advantage of this method, compared to the previous method with external
variables, is that the user can change the task connection on each following formal
instance, by simply connecting a parameter to a different global variable. (See
Figure 34).

@ For more information on formal instances, see Types and Instances - Concept on
page 44.

This method is based on declaring two global variables (for example, Slowly and
Learning) of the data type string, with the attribute constant, and the initial values
'SuperSlow' and ‘Slow’, respectively.

114 3BSE035980-600 A

Section 1 Basic Functions and Components Control the Execution of Individual Objects

In order to reach the following objects that have been created in the application, start
by declaring a parameter in the type (open the type editor and select the parameter
tab). Declare a parameter, for example Sleepy, of data type string. Select the formal
instance (object) inside the type:

1. Right-click the object and select Property > Task connection.
2. Type Sleepy in the task field.

Every created object that is based on the type (containing the formal instance) can
be connected via the connection parameter Sleepy and one of the global variables
Slowly or Learning, located in the application.

Tasks Global variables

SuperFast — Slowly with initial value = ‘SuperSlow’
Learning with initial value = ‘Slow’

Fast type

i T e
e
7
~
Normal -
it

Parameter = Sleepy

formal instance/Zl

Task connection = Sleepy

Slow .
@ on the formal instance.
object1 =
SuperSlow] jleepy connects = Slowly
object2 Sleepy connects = Learning
Current task is SuperSlow I:l

Current task is Slow

Figure 34. Each object can be connected to a different task via the parameter Sleepy
declared in the type and task connected in the formal instance.

3BSE035980-600 A 115

Link Variables in Diagrams Section 1 Basic Functions and Components

The advantage of this method is that the objects of the formal instance, located
inside the type can be connected to different tasks (global variables with a different
task name as init value).

Link Variables in Diagrams

For a graphical data connection in a diagram editor, it is possible to set a
link variable. A local variable of the same data type as the connected ports can be
used.

To create a link variable, right-click the required graphical connection to open the
context menu, and select Link Variable. Enter the name of the link variable.

The link variable name is not displayed in the graphics; it is only visible if you open
the Link Variable dialog.

Normally, link variables are not needed. The compiler auto-generates variables
when necessary. But, if it is needed to access the intermediate value via OPC, a link
variable is required. The declared link variables are available via OPC.

If an output port has multiple graphical connections, all these connections share the
same link variable (if any).

If a block has an in_out port that is graphically connected on both sides, both
connections share the same link variable (if any). This means that if several blocks
have graphically interconnected in_out ports and a link variable is set for one of the
graphical connections, the link variable is forwarded and set to all the graphical
connections in the in_out chain.

Project Constants

Project constants are declared at the top level of libraries and projects. They are
globally visible, and can be used wherever a constant value is permitted, for
example, in program code and for variable initialization. With project constants, it is
possible to create settings for an individual project, without having to modify any
source code, or having to introduce parameters which have to be passed on to all
concerned types.

Project constants are suitable to use for library items that the user wants to change.
Examples are, date and time formats, logical colors and logical names. Do not use

116

3BSE035980-600 A

Section 1 Basic Functions and Components Project Constants

project constants to change the functionality of an object, for example, initial values
and comparisons in code.

Typically, project constants are declared in a library and given default values. They
are then used, for example, in code located inside types.

Project constants are allowed to have the same names as variables and parameters.
Control Builder will, however, choose the variable or parameter name if a name
conflict exists. This must be considered when adding, renaming or deleting
variables or parameters in an already running application.

Follow the naming convention, which says that project constants should begin
@ with the letter “c” (for example “cColors”). Use structured project constants, if
possible.

ﬂ Note that project constants cannot be used to control the execution of function
blocks or control modules. Use a global variable or a parameter instead. For more
information see, Control the Execution of Individual Objects on page 113.

ﬂ If a project constant connected to a retain parameter (or variable) is changed
online, then the change does not effect on existing instances until a cold restart is
performed.

Project constants declared at library level (user-defined libraries) can only be edited
and deleted from the library, that is, they cannot be deleted from the Project constant
dialog that is reach by right-click the control project folder (root object). To edit or
delete a library-declared project constant, right-click the library in Project Explorer
and select Project Constants.

Naming conflicts between project constants appears when the same project
@ constant name exists in more than one library at the same time.

The only way to avoid a naming conflict is either to delete one of the constants or
not using the constant at all. A type conflict can never be overridden.

Structured Project Constants

It is advisable to create one single structured project constant for an entire project or
library, where the project constant name is a concatenation of “c” and the project
name (or library name).

3BSE035980-600 A 117

Project Constants Section 1 Basic Functions and Components

An example:

If the project name is “ACMEToothpaste”, the structured project constant should be
named “cACMEToothpaste”. Using a structured project constant makes sure that
there is little chance of conflict with variable and parameter names. Using a
structured project constant (“cACMEToothpaste™) enables the user to, for example,
use “Max” without causing problems due to a variable or parameter called “Max”,
since the full path to the project constant “Max” would be
“cACMEToothpaste.Max™.

Define only one project constant per library. This project constant can, and should,
be a structured project constant the concatenation of “c” and the library name in
which it is contained. For example, if the library name is “ACMEValveLib” the
(structured) project constant should be “cACMEValveLib”.

All project constants defined in libraries and projects must have been given
unique names.

Typical Use
There are two typical use cases for project constants:
1. To satisfy the need for constant values in all project applications.

Some values might have to be constant throughout the entire project. To change
such a “constant” value, change it once. There is no need to change it at every
occurrence. For such cases, use a project constant. The project constant is
defined in one place only, and can be used throughout the project. Changes to
the project constant will be reflected throughout the project.

An example:

To be able to change the severity for all “High level alarms” in the entire
project, set up a project constant that defines the severity and use the project
constant in all alarm blocks in all applications. To change the severity, just
change the value of the project constant.

In this case, project constants should be defined on control project level, not in
a library.

2. To be able to change library type solutions without having to make changes in
the library itself.

118

3BSE035980-600 A

Section 1 Basic Functions and Components Project Constants

A method commonly used in control application engineering/programming is
to construct libraries, in which re-usable code is placed. It is good practice to
make the library as general as possible, to maximize its usefulness. The use of
project constants is an excellent solution for such situations.

Example 1: Easy Translation

Assume that the user has created a library that makes extensive use of text strings.
Instead of including strings (in the user’s native language) statically in the library,
use project constants. This allows another engineer to change the values of these
project constants and to translate the strings to another language.

For example, a project constant that was originally set to “Stop” can easily be
translated by a German engineer to “Halt”, simply by changing the value of the
project constant. This would not be the case if the user had typed “Stop” in the
library. Such string constants that are to be translated are best stored as a structured
project constant under the component .Settings.

The string “Stop” would, for example, be defined as the structured project constant
“cACME ValveLib.Settings.StopLabel” or, even more levels;
“cACMEValveLib.Settings.Labels.Stop”.

Example 2: Combination of Dynamic and Static String Constants

Consider the following function block, in Figure 35, that controls high alarms.
Signal is of ReallO type, Alarmlevel is of real type, and Message is of string type.

Signal —

AlarmCond

Message —

Alarm level —

Figure 35. The function block AlarmCond located in the Alarm library.

Now, we want a “customized” message to be passed to Message, such as

3BSE035980-600 A 119

Project Constants Section 1 Basic Functions and Components

High Level (> 75 °C)
The message consists of five important elements that make up the message.
“High Level”
“(> “(note the spaces)
75 (a value set by Alarm level)
°C (a value set by Signal.parameters.unit)
oy
All in all, three strings (1, 2, and 5) and two values (3 and 4).

A e

Defining these 3 strings locally would be poor design, since the strings would be
defined for every object that is created from the type. To create a dynamic
environment, use project constants, or, more specifically, structured project
constants.

In the example above, we actually have different string categories — “High Level”,
“(> (13 and 6‘)9’.

The first one is a (dynamic) string that a user may want to translate, depending on
target customer nationality, whereas the other two are static and independent of
language. This calls for two different views of project constant.

Using structured project constants, and the naming convention mentioned earlier in
this section, a defined structured project constant for “High Level” could be:
cACME ValveLib.Settings.HighLevelLabel.

As described in the first example (Example 1 above), we make use of the component
“Settings” in the structure. Underneath this component, we define the constants that
are to be translated, or changed, depending on circumstances.

Next, we define the structured project constant cACMEValveLib.Internal.Str1 and
cACMEValveLib.Internal.Str2 to contain “(> “and *“)”. Note the component
“Internal”, which implies that components (constants) under this level are not to be
changed by the user. Of course, the user can use the structure

cACME ValveLib.Settings.Labels.HighLevel, as described earlier, if the user prefers
more levels.

120

3BSE035980-600 A

Section 1 Basic Functions and Components I/O Addressing Guidelines

I/0 Addressing Guidelines

A good 1I/0 variable structure is the key to being able to debug and change an
application. A good structure also makes the connection of the application to system
I/O easier to read and understand.

Below are some hints and tips to ensure that the I/O connections have a good
structure.

* A good I/O connection structure requires a good application program structure,
and also a realistic translation of the process to be controlled, into the
application program.

e Try to collect I/O of the same process object in the same controller, and even in
the same object in the application program.

* Try to divide the application program into process cells, with contents similar
to the real process.

These hints are basic rules for object-based programming for real processes, and
once the application has a good structure, it is easier to divide I/O signals into
groups or cells of the process.

3BSE035980-600 A 121

Connecting Variables to I/O Channels Section 1 Basic Functions and Components

Connecting Variables to I/0 Channels

Only one variable can be connected to each I/O signal, and vice versa. This is not a
problem for output signals, but for input signals it may be necessary to read the
same input signal from different programs, or even from different places in the same
program. This can be done by placing the connected IO variables in a common area,
for example, in the application. Then the variables can be read by the program(s).

Note that the result of an IO copying is different depending on whether the
parameter is IN or IN_OUT. An IN parameter will result in a copy of the value,
whereas an IN_OUT parameter will result in a reference to the current value. While
different tasks can copy the same I/O signal, a task with a higher priority may
update the signal value in the middle of a scan. See also Function Block Execution
on page 71 and the information on connected I/O channels in a task in the System
800xA Control AC 800M Planning (3BSE043732%).

If the same I/O signal must be read by different applications, the I/O copying must
be done from one of the applications. The copied value can then be moved to other
applications through ordinary communication services. See also Communication
between Applications Using Access Variables on page 99.

The address for a hardware unit is composed of the hardware tree position numbers
of the unit and its parent units, described from left to right and separated by dots.
For example, channel 1 on the I/O unit DO814 in Figure 36 has the address
Controller_1.0.11.1.1.

Figure 36 illustrates an example of a controller hardware position.

122 3BSE035980-600 A

Section 1 Basic Functions and Components Connecting Variables to I/0 Channels

&) P4 Controller (174.16.12.181)
@) Connected Applications

“““ W) Connected Libraries

= 4 Hardware AC 800M
Controller_1 o 00
" -
Hardware pos. 0 — i
EMN
POSitiOI’\ 11 Etheret Hardware - PA_Controller0.11.101 AI310 [R
) P Editor Edit View Inset Tools Window Help
MeduleB - .
Un|t111\ D10uAe\81uDS %@ [. A A LS
AQB10 |Chanﬂe\ Channel Value |Forced Variable Value
0.11.1011]
Channel 1 — wooooso | weirinz 0
[wo.11.1013 mj
[Iwo 11014 O
[wo.11 1015 O
[wo.11.1016 O
[wo.n. 1017 O
[wo.11 10138 O

Figure 36. An example of how 10 channel addresses are created in a control project.

All I/0O access is done via variables connected to I/O channels and these variables
are connected in the hardware configuration editor. The Connections tab displays all
channels that can be connected.

3BSE035980-600 A 123

Connecting Variables to I/O Channels

Section 1 Basic Functions and Components

O =

I/0 Data Types

Variables connected to I/O can be of any of the simple data types, bool, dint, dword
or real, or any of the system-defined I/O data types. For example, an IO unit input
can be connected to a variable of bool data type or a variable of BoollO data type.
For applications that only require a simple channel value, it is enough to connect a
variable of simple data type. But for applications that need comprehensive
information like forcing 1O channels, reading status, or validate analog channel
values, must connect variables that is of system defined (structured) IO data type.

It is possible to force I/O values, and display forced and non-forced values from
an engineering station, regardless of whether the channel is of a simple data type
or an I/O data type.

It is not possible to assign the forced component of a system defined I/O data type
in a SIL certified application, but it is possible to reset a specific force using the
firmware function ResetForced Value.

The user can always choose a variable that is of the simple data type bool, dint,
dword, or real, and connect it directly to the I/O channel, as long as the user is
content with a simple value in return. However, such a connection does not take
advantage of certain auxiliary signals which come with structured data types. A
predefined structured data type includes signals for I/O forcing, analog signal status,
maximum and minimum values, etc.

Always use In_Out parameters when writing to output I/O variables from a
function block. This will prevent unintentional overwriting of I/O variable
component values, such as scaling. Do not use Out parameters for this purpose.

Figure 37 presents as an example the available components inside the structured
data type BoollO.

MName Data Type Attributes Initial Value ISP Value |Description =
1 |Value bool retain displayval false Walue in the application
2 [IOValue bool retain false Value from /O before forcing
3 |Forced bool retain false Tells if the input is forced or not
4 [Status dword retain 16#00C0 16#00C0 |Error status
£ -
4 % Components | [3
Figure 37. Components inside the structured data type BoollO
124 3BSE035980-600 A

Section 1 Basic Functions and Components Connecting Variables to I/0 Channels

A structured data type (for example, the BoollO data type) contains four
components. Declare a local variable MyIOVar as a BoollIO data type, and then
connect MyIOVar to an IO channel to automatically access these four component
values at the same time.

By declaring a structured data type, more information can be accessed from the
@ IO channel, which can be read/written in code.

Declaring MylOVar as a simple data type, Bool, provides access to the channel
value. In other words, the user cannot read or write other values from the code.

When connecting a structured data type to an I/O channel, always connect the
data type (like MylOVar). Do not try to connect one of the components inside
(like Value, 1/O Value, Forced etc.) directly on the I/O channel.

Table 11 shows the (hardware editor) entries to different IO channels. The Type
column presents the IO channel data type in the hardware editor, whereas the
Variable column presents possible data type connections (simple, structured).

Table 11. Possible variable (data types) connections to 10 channels.

Channel |Name Type Variable

IX, QX Boolean. input (1X) and BoollO bool, BoollO
output (QX)

W, QW Non-boolean. input (IW) and | ReallO real, ReallO
output (QW)

W, QW Non-boolean. input (IW) and | DintlO dint, DintlO
output (QW)

W, QW Non-boolean. input (IW) and | DwordIO | dword, DwordlO
output (QW)

IW0, QWO | (MAIl Inputs, All Outputs DwordIO | dword, DwordIO

IWO0 Channel status DwordlO | dword, DwordlO

IWO0 UnitStatus HWStatus | dint, HWStatus

(1) ISP and OSP values are not set for variables connected to All Inputs/All Outputs!
For more information see also Access All Inputs and All Outputs on page 378.

See Figure 38 and the corresponding structured data types in Table 11.

3BSE035980-600 A 125

Connecting Variables to I/O Channels

Section 1 Basic Functions and Components

Channel Mame Type Yariable 10 Description
[+0.11.21 Input 1 BoollO Anplication_1.Program? MylObar

PO.1122 Input 2 a0 4

M01123 Input 3 Boall0 /

Seftings

/
Cu;mémiuns A Properties A Status A Unit Statys / K
z

o

/ Raw 1, Col3

A00xainstaller

10 channel of type boollO.

/

MylIOVar of BoollO (correct connection).

Figure 38. A correct way of connecting 10 variables. The structured data type
MyIOVar connected to an 10 channel.

Example of /0 Channel Representation

The IO channel in Figure 38, 1X0.11.1.1, interpreted from Table 11, gives the
following: IX is a Boolean input, whereas 0.11.1 represents the hardware address

and .1 represents the I/O channel.

Monitoring the Status for Hardware and I/O

UnitStatus is a hardware connection to individual hardware and 1/O units in the
Project Explorer. The user can connect a variable to Unit Status by selecting the
Unit Status tab in the hardware editor.

If the user chooses to connect a variable to Unit Status this must be either of a dint
data type or of an HWStatus structured data type. The simple data type dint will
return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information. See the
contents inside the Unit Status tab in Figure 39.

126

3BSE035980-600 A

Section 1 Basic Functions and Components

Extensible Parameters in Function Blocks

MNarne alue Description -
HW\'State W arning

HYWstateChangeTime 2004-08-16-14:03:58 |Tirme when ertor ar warning occurred
ErrorsAndWarnings 030

Extended=tatus 00

LatchedErrorsAndWarnings |0x100 Forced

LatchedExtendedStatus 00 "

% Settings A Connections A Properties A Status 2 Unit Status fﬂ

Row 1, Col 1

Figure 39. The components available inside the HWStatus.

In addition to the Unit Status there is a 'collective' hardware connection,
AllUnitStatus, which contains errors and warnings regarding all hardware units
connected to the controller.

Similar to Unit Status, the user can choose to connect a variable of simple data type
dint or a variable of the structured data type HW Status. The simple data type dint

will return one of the unit status value 0 (OK), 1 (Error) or 2 (Warning). Whereas, a
variable of HWStatus provides more extended unit status information.

Channel \Mame

Type

“ariable

AllUnitStatus

dint

ShopDoors ST Mormal HardwareStatus [Status of all hardware units

Settings

Connections 4 Unit Status /7

IY0 Description a3

Paw 1, Cal 3

Figure 40. The AllUnitStatus connection gives access to the status of all units.

ﬂ For information about supervising IO channels and unit status in online mode, see
Supervising Unit Status on page 375.

Extensible Parameters in Function Blocks

Some function block types have extensible parameters, such as MMSRead,

COMLIRead, etc. This means that the number of input/output parameters is
changeable, and must be specified while declaring the function block in the function
block tab.

3BSE035980-600 A

127

Keywords for Parameter Descriptions Section 1 Basic Functions and Components

The editor automatically inserts [1] when the user specifies a function block type
with extensible parameters. Change the number within the brackets to the required
number of parameters.

To see which function block types can have extensible parameters and the maximum
number of parameters for each type, see the Control Builder online help.

ﬂ In the Function Block Diagram (FBD) and Ladder Diagram (LD) languages, a
maximum of 32 extensible parameters per function block can be shown.

will be presented in online editors or in the project documentation and

@ There is no support for online values on Extensible Parameters. No such values

consequently it is not recommended to trust these values.

Keywords for Parameter Descriptions

Types that are located in standard libraries contain keywords in the description
column for parameters. These keywords help the user to organize the parameters
and document the purpose of parameters.

Table 12. Type description keywords.

Keyword

Description

IN

The parameter direction is IN (read).

ouT

The parameter direction is OUT (write).

IN(OUT)

The parameter direction is both IN and OUT, but mainly IN (read).

OUT(IN)

The parameter direction is both IN and OUT, but mainly OUT (write).

NODE

Applies only to control modules. Used to indicate that the parameter has
a graphical connection.

128

3BSE035980-600 A

Section 1 Basic Functions and Components Real value in AC 800M

Table 12. Type description keywords.

Keyword Description

EDIT Applies only to IN parameters. The parameter, which must have a value,
is only read following changes to the application, warm restart or cold
restart.

Be careful not to connect a variable to a parameter with the keyword
EDIT. Use a literal instead.

NONSIL |Some of the Certified Function Block Types and Control Module Types,
contains SILx Restricted sub-objects.

It is not allowed to use output parameters from Function Blocks or
Control Modules marked with Non-SIL in the parameter description in a
way that can influence the safety function of a SIL classified application.
If such code affects an output from a SIL3 application, it might result in a
Safety Shutdown.

Real value in AC 800M

The AC 800M Controller stores real values according to the Institute of Electrical
and Electronics Engineers, Inc. (IEEE) has standard for floating-point
representations and computational results (IEEE Std 754-1985).

Floating-point consist of three fields, a sign (1-bit there 1 is positive), a biased
exponent (8-bit) and a value (23-bit) gives a total of 32-bits. The range is
+1.18%10738 t0 £3.4%1038. The 24 bits (including the hidden bit) of mantissa in a
32-bit floating-point number represent a precision of approximately 7 significant
decimal digits.

Unlike the real number system, which is continuous, a floating-point system has
gaps between each number. If a number is not exactly representable, then it must be
approximated by one of the nearest representable values.

Because the same numbers of bits are used to represent all normalized numbers, the
smaller the exponent is, the greater is the density of representable numbers. For
example, there are approximately 8,388,607 single-precision numbers between 1.0
and 2.0, while there are only about 8191 between 1023.0 and 1024.0.

3BSE035980-600 A 129

Real value in AC 800M Section 1 Basic Functions and Components

Different results between types of CPU

All AC 800M controllers are limited to 32 bit accuracy regardless Floating Point
Processor (FPU) or not.

The SoftController does make use of the Floating Point Processor (FPU) which has
an internal accuracy of 128bits (this is standard PC functionality). The FPU does
have an internal accumulator which stores intermediate results with the mentioned
high accuracy.

Therefore there could be a different in calculations between SoftController and
AC 800M.

Why there are no exact or unexpected results

All calculations will give an approximately value, Inaccurate or unexpected results
in your calculations have to do with the gaps between each number that has been
truncated where the exponent is large.

Adding small numbers to a very large one in all computer systems give an
inaccurate result for example:

X:=10.0E8 + 1+1+1+1+1+1+1+1+1.....(1000 times).
X:=10.0E8 + 1000

This will give different results on X if the addition of +1 is truncated and not the
+1000 operation.

Another example:

65536.0000000 is 6.5536E4 or in binary form 0 10001111 0000000 00000000
00000000

65536.0039062 is the same as 6.5536E4 or in binary form 0 10001111 0000000
00000000 00000000

65536.0039063 is 6.55360078E4 or in binary form 0 10001111 0000000 00000000
00000001

To maintain accuracy in your calculations scale down the large value (or scale up the
small one) before the calculations are made, then compensate for the scaling.

In extreme cases, the sum of two non-zero numbers may be equal to one of them.

130

3BSE035980-600 A

Section 1 Basic Functions and Components Real value in AC 800M

How does AC 800M handle the result when result is out of limits

Arithmetical calculations near the range limits will result in either overflow or
underflow.

Division by zero will result in the largest positive value if the numerator is positive
and the largest negative value if the numerator is negative.

In some rare case could the result be NaN (Not a Number).

To ensure that the result is proper values use the function Reallnfo. See online Help
for details about Reallnfo.

How to use floating point

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard
for floating-point computation. A floating point value has the type real in
IEC61131-3.

Arithmetic

A floating point value has typically 7 significant figures. If a big and a small floating
point value are added there is not enough significant figures.

Example:

An accumulator rl is incremented by a small value 2: "rl:=r1 + 12;". It will work
fine when r1 is small but suddenly r1 won't increase anymore, and that is because
the sum has too many significant figures. If for instance r1 = 123456.0 and 12 =
0.0009 the sum r1 should be 123456.0009. But this value will be truncated to
123456.0, thus no increase of rl.

The solution is to use another accumulator that accumulates 12 up to a size that
could be safely added to the final accumulator r1.

Division
Division by zero will result in the largest positive value if the numerator is positive
and the largest negative value if the numerator is negative.

3BSE035980-600 A 131

Real value in AC 800M Section 1 Basic Functions and Components

Comparison

Don't do "bl:=r1 =12;" to find out if two floating point values are the same. r1 and
r2 might be shown as the same value but have different binary representation. You
probably want to do something like "bl:= abs(r1 - r2) < 0.001;"

Overflow

A floating point value might get the special value "overflow" if for instance two big
values are multiplied. Any subsequent use of an overflow value will result in a new
overflow value. Thus one overflow value might be spread through a computation
unit every value is an overflow. When there is a risk that an operation might give an
overflow the function Reallnfo can be used. See Online Help for details about
Reallnfo.

132

3BSE035980-600 A

Section 1 Basic Functions and Components Property Permissions

Property Permissions

Parameters and variables that are not needed for HSI, configuration, etc., should
have the attribute Hidden, but for all other variables that will be exposed via the
OPC Server, property permissions must be properly set. Note that components
inside a data type should also have property permissions. The user can set
permissions from both Project Explorer and Plant Explorer.

The following five property permissions are the frequently applicable. However,
there are several other property permissions available, along with self-defined
property permissions.

* Read
e Operate
e Tune

* Configure
* Administrate
For more information about creating self-defined Property permissions, see the
@ System 800xA Administration and Security (3BSE037410%).

In some cases, there is also a need for setting authentication levels, besides the Read
and Write property permissions.

Re-authenticate

Re-authenticate means that the user will be asked for UserIld and Password before
changing the property.

ﬂ This function requires a separate license and is not available to all users.

Double Authenticate

Double authenticate means that two separate Userlds and Passwords have to be
entered before changing the property.

ﬂ This function requires a separate license and is not available to all users.

3BSE035980-600 A 133

Property Attribute Override Section 1 Basic Functions and Components

Set Property Permissions and Authentication Level

The property permissions and the authentication level can be set from both Plant
Explorer and Project Explorer.

To set permissions from Project Explorer:
1. Double-click the object. The corresponding editor opens.
2. Select Tools > Edit Permissions. The Edit Permissions dialog is displayed.

3. Click a variable under Property, and select (Read/Write) permissions and
authentication level from the drop-down menus.

The user can set the same property permission for several variables in one
operation, by selecting the variables (Ctrl + mouse click) and then select
permission from the drop-down menu.

4. Click OK.

Property permissions and authentication levels can only be set on variables and
parameters of simple data type. Hence, property permissions and authentication
level attributes for structured data types will display (N/A). Corresponding
settings for components must be repeated inside each Data Type.

Property Attribute Override

Property Attribute Override is an aspect that allows the user to override existing
property permissions and authentication flags on both types and objects, inside
libraries. For more information, refer to the System 800xA Administration and
Security (3BSE037410%) manual.

134

3BSE035980-600 A

Section 1 Basic Functions and Components Library Management

Library Management

From the user point of view, there are two main types of library:

* Standard libraries, that are installed with the product. These are protected and
cannot be changed.

* User-defined libraries, in which users can add their own types. Copies of
template types (data types, function block types, control module types, and
diagram types), from the standard libraries can be modified and also added into
the user-defined libraries.

The following operations are relevant to both library types:

» Libraries must be inserted into the control project in which they are used, see
Insert Libraries into Control Projects on page 138.

* A library that contains types for applications must be connected to all libraries
and applications that use types from the library. Libraries containing the
hardware types (units) used in the controller configuration have to be
connected to the controller. See Connect Library to Application, Library or
Controller on page 138.

* Alibrary can be disconnected from, an application, library or controller, see
Disconnect Libraries on page 140.

* Alibrary can be imported/exported to/from an 800xA system, see
Import/Export Libraries on page 141.

The following operations are relevant to non-standard libraries only, since standard
libraries are protected and cannot be changed:

* A new library can be created, see Create Libraries on page 141.
* The state of a library can be changed, see Library States on page 142.
* The version of a library can be changed, see Library Versions on page 143.

* Types can be added to a library, as long as its state is Open, see Add Types to
Libraries Used in Applications on page 147 and Add Customized Hardware
Types to Library on page 150.

* Alibrary can only be deleted if it is not connected to any application, library or
controller, or if any type is in use in any project in the system (see Delete
Libraries on page 141).

3BSE035980-600 A 135

Connect Libraries Section 1 Basic Functions and Components

* A library can be password-protected, see Library Password Protection on page

146.

Connect Libraries

All libraries have to be present in the Library Structure in Plant Explorer, in order
for them to be connected to control projects, other libraries, and applications.

All AC 800M standard control software libraries are added to the Library Structure
when the AC 800M Connect is added to the 800xA system, see Figure 41. In Project
Explorer, libraries connected to a control project are stored in the Libraries folder,
while libraries connected to applications and libraries are stored in the Connected

Libraries folder, see Figure 42.

FE |(Enter search name) j |N0 Filter
"Ej Library Struckure j

BT

Aspects of ‘AlarmEventLib'

+ Q Alarm & Event Configurations, Alarm & Event Configuration Group A
+ Alarm Collection Definitions, Alarm Collection Definition Group
+ g Default Yiew Class, Default View Class

Q External Alarm Globals
+ E;‘ History Log Templates, History Log Template Library
= Q Libraries, Library Collection

+ @ AlarmEventLib, Library

+ @ Basiclib, Library

+ @ Batchlib, Library

-l COMLICommLib, Library

+ @ CommunicationLib, Library

+ @ ControladvancedLib, Library

+ @ ControlBasicLib, Library

+ @ ControlExtendedLib, Library

+ @ ControlFuzzyLib, Library

+ @ ControlSimpleLib, Library

+ @ ControlStandardLib, Library

+ @ ControlSupportLib, Library

+ @ Djormelib, Library

+- (il FFH1CommLib, Library

(il FFHSECommLib, Library

+ @ FireasLib, Library

+ @ GraphicTemplateLib, Library

+ @ GroupStartLib, Library

+ @ IconLib, Library

Figure 41. Libraries in Library Structure.

Library Definition
2 Library Structure
Library Type Reference

@Object Icon

Qo (il = | AlarmEventLib:Li

Identification l

Category: |Mame
Mame: AlarmEventLib

Description:

136

3BSE035980-600 A

Section 1 Basic Functions and Components

Connect Libraries

=~ W Libraries

@ system

P AlarmEventLib 1.6-0

Y BasicLib1.7-2

[P ControlStandardLib 1.5-6

P ControlSupportLib 1.4-4

Y Iconlib14-0

[P ProcessObjBasicLib 2.5-1

P ProcessObjExtLib 2.5-0

W, Hardware

P BasicHwLib 5.1-1

P C1853SerialComHwLib 1.0-0

P CI854PROFIBUSHWLib 2.1-3

P s800CI801CIB54HWLIb 1.3-1

P s800CIB40CIB54HWLIb 1.3-1

P ssooloModulebusHwlLib 1.3-0
@ [SerialHwlib 2.0-9

@ Applications

ha .

O-&-F-8-F-0-0-8-5

B8008-8

-

= W Cennected Libraries

Y BasicLib1.7-2

[P ProcessObjBasicLib 2.5-1

i) ProcessObjExtLib 2.5-0
@) Dhagrams

= 4 Controllers

- 3 Controller_1 (172.16.0.0)

- @ Connected Applications

= @ Cennected Libraries
il BasicHwLib 51-1
i) CIB54PROFIBUSHwLIb 2.1-3
P s800CIB40CI854HwLib 1.3-1
il s800loModulebusHwLib 1.3-0

Figure 42. Libraries in Project Explorer

Libraries inserted
in the Project

Libraries connected
to the application

Libraries connected
to the controller

3BSE035980-600 A

137

Connect Libraries Section 1 Basic Functions and Components

Insert Libraries into Control Projects

A library always has to be inserted into the control project before it can be
connected to an application or a controller. To connect a library to a control project:

1. In Project Explorer, expand the Project folder.

2. Select the Libraries/Hardware folder, right-click it and select Insert Library.

Libraries can also be inserted in Plant Explorer. Find the project in the Control
Structure, select the Project aspect, select the Libraries tab, click Insert and
select the library from the Select a Library dialog box.

Connect Library to Application, Library or Controller
To connect a library to an application, a library or a controller:

1. In Project Explorer, expand the corresponding Library, Application or
Controller folder.

2. Select the corresponding Connected Libraries folder, right-click and select
Connect Library.

It is also possible to connect a library using drag-and-drop operation. Select the
library to be connected, and drag it to the required application, library, or
controller folder.

Replace Connected Library

A connected library can be replaced, for example, when the user wants to update to
a newer library version. Replacing to a newer version, results in that all instances of
a type in the new library will be used instead of the type in the old version.

To replace a connected library:

1. In the corresponding Connected folder, right-click the library and select
Replace Library.

2. Press the Yes button and select a library from the drop-down list in dialog box.

3. Click the Replace button to confirm.

138

3BSE035980-600 A

Section 1 Basic Functions and Components Connect Libraries

Library Usage

The Library Usage function displays the list of places where a library is used, and
where it is connected. For ordinary libraries the Library Usage function searches
applications and other libraries. For libraries with hardware, it searches controllers.

1. Right-click the library and select Library Usage as in Figure 43. The Library
Usage dialog box is displayed with list of applications where the library is
connected.

W& Control Builder M Professional - LibUsageTe
File Edit View Tools Window Help

Dz BB e]

=] y:?, LibllsageTest3
Libraries

+ a Syskem

oo

3 Andreasli & Reserve..

Basiclib 1 &2 Release Reservation...
- ELib 1.0-0 &P Take Over Reservation. ..
JClb L0 pp

Iconlib 1.
[E| Hardware Properties s
pplcations @) prjiect Constants
Applicatiol

B_App Docurnentation, ..
]

Ef] Cortrollers | @ Search alt+F12
Rebuild Search Data

¥ Remoye Del
Rename Fz2

Figure 43. Library Usage

3BSE035980-600 A 139

Connect Libraries Section 1 Basic Functions and Components

2. Select System to search all projects in Aspect Directory. Click Refresh as
shown in Figure 44 to see the library used in several projects.

Wi Library usage - ALib 1.0-0 |
- Search result
Path [Redation |
LiblsageTest1 The library s inserted in the project
LiblUsageTest3 The library s inserted in the project

LiblUsageTest1, Applications.Bapplication The library is connected to the application
LiblUsageTest1, Applications. Capplication The library is connected to the application

LiblUsageTests, Applications.&_App The library is connected to the application
LiblUsageTests. Applications.C_App The library is connected to the application
Libraries,Bib 1,0-0 The library is connected to the library
Libraries,CLib 1.0-0 The library is connected to the library

Mumber of hits: 8

[~ Search

© Current project

& System

= Hep

Figure 44. Library Usage dialog box when the System search option is selected

Disconnect Libraries

A library can only be removed if the library and its types are not used within the
system.

To remove a library from a control project:

* In the Libraries/Hardware folder, right-click the library and select Remove.
The library is removed from the control project, but it can be inserted at any
time, since it is still present in the Library Structure.

» If the Library is in use the following dialog box displays.

Remove Library |

@ The library is in use, it can not be removed, Do You wish to see where the library is used?

* Click Yes to see the Library Usage dialog box.

Libraries can be disconnected from both applications, libraries and controllers:

140 3BSE035980-600 A

Section 1 Basic Functions and Components Import/Export Libraries

* In the corresponding Connected folder, right-click the library and select
Disconnect (Library). The library is disconnected, but it can be re-connected
at any time, since it is still inserted to the control project.

Delete Libraries

Standard libraries cannot be deleted. Other libraries can be deleted only if they are
not connected to any application, library or controller. If you attempt to delete a
library with connections to other objects, you will get an error message.

To delete a library from the Library Structure:

1. In the Libraries, Library Collection folder, right-click the library and select
Delete.

Import/Export Libraries

Libraries can be imported to and exported from an 800xA system. This makes it
possible to develop libraries centrally, after which they can be added to other
engineering stations at other sites.

For detailed information on how to import/export libraries, see Import and Export
@ on page 413.

Create Libraries
To create a new library:

1. In Project Explorer, right-click Libraries or Hardware and select New
Library... The New Library dialog box is displayed.

FE New Library

M amne: ||

[ok][Eancel]

Figure 45. New Library dialog box

3BSE035980-600 A 141

Library States Section 1 Basic Functions and Components

2. Enter the name of the new library and click OK. The new library is created and
inserted into the control project. It is also inserted into the Library Structure in
Plant Explorer.

For information on naming conventions for libraries, see System 800xA Control
@ AC 800M Planning (3BSE043732%*), and AC 800M Library Object Style Guide
(3BSE042835%).

Library States

A library is always in one out of three possible states:

* Open
The contents of the library can be changed. This is the normal state for a library
when it is under development.

e Closed
The contents of the library cannot be changed. However, the state can still be
changed back to Open.

* Released
The contents of the library cannot be changed. However, in Plant Explorer the
state can be changed to Open, but with the Revision index of the version
number increased.

To change the library state:

1. In Project Explorer, right-click the library and select Properties>State. The
State dialog box is displayed.

Stake of TankLibl04 1.0-0
'@} Open
) Closed
) Released
[Ik l [Cancel] [Help

Figure 46. State dialog box

142 3BSE035980-600 A

Section 1 Basic Functions and Components Library Versions

2. Select the desired state and click OK. The library state is changed.
The library state can only change:
* From Open to Closed or Released.

* From Closed to Open or Released.

Library Versions

The following rules should be used when creating new versions of a library. The
version number syntax is MajorVersion.Minor Version-Revision (X.Y-Z), for
example, 2.0-1.

Table 13. Version handling rules for libraries.

Compatibility with

Increase of Rule b .
previous versions
Major vers. X The major version number is increased if the The library is system or
library has types which have changed their application incompatible.

behavior, or if it is dependant on a new system
version, for example, using new system functions.

The major version number is also increased if a
connected library has increased its major version
number, and the new functionality of this new
library version is needed.

The maximum limit for the major version number of
a library or a hardware library is 32767.

3BSE035980-600 A

143

Library Versions

Section 1 Basic Functions and Components

Table 13. Version handling rules for libraries.

Increase of Rule Com.patlblllty w ith

previous versions

Minor vers. Y The minor version number is increased if new The library is compatible.
types have been added to a library, or an already | The increased minor
existing type has increased functionality. version number reflects
The minor version number is also increased if a extended, modified, or
connected library has increased its minor version |added functionality.
number, and the new functionality, which is the
reason for the change, is needed.

Rev. Z The revision index is increased when only bug The library is compatible.
fixes have been done or when library state is Functions may now have
changed from Released to Open. changed their behavior,

The revision number is also increased if a since they are working as
connected library has increased its revision intended. This may affect
number, and this new version is needed. the application behavior.
The library version can be changed in two ways:
* Change Library Version (Project Explorer)
This operation only works on libraries with state Open. This operation does not
create a new copy of the library. It simply updates the version number (that is, it
changes the version label of the library). The new version replaces the old and
all connections to other objects are intact.
* Create New Library Version (Plant Explorer)
This operation creates a new version of the library. This new version exists in
parallel with the old version. All connections to control projects, applications
and other libraries are preserved in the old version, but the new version does
not preserve any connections.
The two versions cannot be connected the same application or library, but they
can be inserted into the same control project.
144 3BSE035980-600 A

Section 1 Basic Functions and Components Library Versions

Change Library Version

The library version can only be changed for libraries with state Open. To change the
library version:

1. In Project Explorer, right-click the library and select Properties>Version. The
Version dialog box is displayed.

¥ yersion

Werzion of TankLib104 1.0-0

Major version Minar version Fewvizian
[& - [oE] -
[] l [Canicel] [Help]

Figure 47. Version dialog box

2. Set the new version number, according to the version handling rules, see
Table 13 on page 143.

3. Click OK. The version number of the library changes.

Create New Library Version
To create a new library version:

1. In the Library Structure in Plant Explorer, expand the Libraries, Library
Collection folder.

A new version can only be created if the library state is Released. If you try to
create a new version of a library with state Closed or Open, you will get an error
message.

2. Click the library and select Library Version Definition aspect. The Aspect
preview pane opens.

3. Click New Version button. A ‘New Version’ dialog box opens (Figure 48).

3BSE035980-600 A 145

Library Password Protection Section 1 Basic Functions and Components

Library: | TankLib

Major version Minor wersion Revision

| 25 . [o -] 04
| Create | Zancel |

Figure 48. New Version dialog box

4. Enter a new version number according to the version handling rules, see
Table 13 on page 143.

5. Click Create. A new version of the library is created.

The new library version are not used anywhere by default, thus you must
@ connect/replace the library yourself.
Advanced Library Version Handling in Applications

For a detailed discussion on how to work with library versions (libraries that have
types to be used in applications), see the System 800xA Control AC 800M Binary
and Analog Handling (3BSE035981%).

Library Password Protection
To password protect the libraries:

1. Right-click the library and select Properties > Protection.
The Protection Properties dialog opens.

2. Click Set Password. The Password dialog opens, see Figure 49.

146 3BSE035980-600 A

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

"'?.‘;1 Set Password &J

A password must be at least 8 characters long and shall contain characters from at least three of following groups:
- Lowercase characters

- Uppercaze characters

- Digits

- Other printable characters:

Enter old pazzword:

Enter new Password: |

| Werify new password:

Figure 49. Password dialog box

3. Enter the new password and confirm it in the Verify new password field.

ﬂ If the library is already password protected, you have to enter the old password
before entering a new one. A password must be at least 8 characters long and
should contain characters from three of the following groups:
- Lowercase characters
- Uppercase characters
- Digits
- Other printable characters

4. Click OK. The library can now not be changed without entering the password.

Add Types to Libraries Used in Applications
Types can only be added if the library state is Open.

Follow the steps below to add the following functions in a library:

3BSE035980-600 A 147

Add Types to Libraries Used in Applications Section 1 Basic Functions and Components

1. In Project Explorer, expand the corresponding library folder.

B W Libraries

----- ﬁﬁ] System

..... {0 BasicLib 1.6-8

..... i IconLib1.3-3

(=8 1 TankMainLib 1.0-0

. 1Y Connected Libraries
..... W, Hardware

Figure 50. Library with sub folders

148 3BSE035980-600 A

Section 1 Basic Functions and Components Add Types to Libraries Used in Applications

2. To the library (see Figure 50), add the following:

a. To connect another library to library, right-click the Connected Libraries
folder and select Connect Library.

E\ ----- i Libraries

..... D System

- [0 BasicLib1.6-8

- [P Ieonlib 1.3-3
Efﬂ TankMainLib 1.0-0

..... i, Hardware
- @) Applications
- 4] Controllers

Connect Library

Documentation...

Figure 51. Connecting a Library

b. To add project constants to library, right-click the library folder and select
Project Constants.

E| ----- Il Libraries

: ﬁw System

[0 Basiclib1.6-8
[0 IconLib 1.3-3

CoE- W ConnectedL L=

..... W Hardware & Release Reservation...
G- @) Applications & Take Over Reservation...
= 4] Controllers *#4 Refresh

..... 1) Controller 1 (1721
Properties L4

i Consonis

Documentation...

Figure 52. Adding Project Constants

c. Toadd a type to the library, right-click the folder corresponding to the type
you want to add and select the command for creating a new type.

3BSE035980-600 A 149

Add Customized Hardware Types to Library Section 1 Basic Functions and Components

B [, Libraries

B ﬁ]_]]System

..... & Data Types
----- il Functions
- [P BasicLib1.7-1
- [lconLib 1.4-0

S Troviasani 10
b Connected L| & Reserve...

e EETESﬂibl-U'U < Release Reservation...
- @ Hardware &7 Take Over Reservation...

I':'I 5, Apphcatmlns . Deploy..
..... E,vhpphcatlon_l—(c 44 Refresh
..... 4] Controllers 7 el
Properties b

(€ Project Constants

Documentation...

& Search Alt+F12
Rebuild Search Data
Library Usage
& Data Type...
Paste %= Function Block Type...
7% Remove Del | % Control Module Type...
=] Rename F2 | l&% Diagram Type..

Lg

Figure 53. Adding a type

Add Customized Hardware Types to Library

Customized hardware types can only be added to the library if the library state is
Open. To add a customized hardware type to a library:

1. In Project Explorer, expand Libraries > Hardware.

2. Right-click Hardware types folder under your chosen library, and select
Insert/Replace Hardware Type(s).

150 3BSE035980-600 A

Section 1 Basic Functions and Components Add Customized Hardware Types to Library

Bl W Libraries
e Eﬁ] System
o [l AlarmEventLib 1.6-0
- [l BasicLib 1.7-2
i [} ControlStandardLib 1.5-5
- Eﬁ] ControlSupportLib 1.4-4
- [IeonLib 1.4-0
i [} ProcessObjBasicLib 2.5-1
7 [} ProcessObjExtLib 2.5-0
=~ W Hardware
..... [l BasicHwLib 5.1-1
- [My_IOHwLib 1.0-0

L. g Hardware types
_____ Eﬁl sa00loMadulebusHw Insert/Replace Hardware Type(s)... |

Figure 54. Inserting hardware types in library

oy OO e OO o O oy OO s OO e O ey OO

3. Browse and select the device capability description file (for example a *.gsd
file) you want to add as hardware and click Open. (See also Supported Device
Capability Description Files on page 152).

4. The Device Import Wizard starts. Follow the instructions in the wizard.

The usual way to distribute and share customized hardware types is to Export and
Import the complete library (with the customized hardware type(s)), in Plant
Explorer. In exceptional cases, it is possible to insert individual external customized
hardware types to a user-defined library, for example, a hardware type of a *.gsd file
that have been converted and used in an earlier version of Control Builder.

In this case, right-click the Hardware types folder under your chosen library and
select Insert/Replace Hardware Type(s) and browse to the hardware type (*.hwd
file) to be inserted. With Insert/Replace Hardware Type(s) it is also possible to
replace same hardware type.

If a hardware definition file (*.hwd) is re-imported with changed parameters,
@ Control Builder must be restarted so that the changes take effect.

ﬂ If changes are made to existing *.hwd files, a new GUID is created for them to
coexist after the re-import.

3BSE035980-600 A 151

Device Import Wizard Section 1 Basic Functions and Components

Device Import Wizard

You use this wizard to import a device capability description file. The wizard will
convert this file to a hardware type and insert the type into a user-defined library.
The appearance of some wizard dialog boxes will be different depending on the file
type to import.

Always complete the wizard, even if you are not finished. Then, you can re-
import the file and continue where you left off.

When a wizard dialog box is displayed, relevant information is read from the
device capability description file. If it is large this may take a while, and a
progress bar will be shown.

* You can import a new device capability description file, as described above
(Add Customized Hardware Types to Library on page 150).

* You can change conversion settings for a previous import, as described in
Wizard on page 155.

* When you receive an updated device capability description file, you may want
to replace the previous import. Import the new file the same way as the old one,
as described above.

For more information on the Device Import Wizard, refer to the online help.

Supported Device Capability Description Files

You can only import supported device capability description files. The following
files are supported:

e PROFIBUS GSD files
e PROFINET IO GSD files
. Ethernet/IP and DeviceNet EDS files

For PROFIBUS GSD-files, *.gs? is the standard file extension. However, a file can
also have a different extension that specifies its language, for example, *.gse
(English) or *.gsg (German).

152

3BSE035980-600 A

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

For PROFINET 10 GSD files, *.xml is the standard file extension. PNIO uses
GSDML, an XML based markup language to describe the characteristics of the
PNIO devices.

For Ethernet/IP and DeviceNet, *.eds is the standard file extension. The wizard will
convert the EDS file to a hardware definition file (HWD File) and insert it as a
hardware type into the user-defined library.

not for CI851. (However, when you upgrade a previous system offering, any
included hardware types for CI851 will be upgraded as well.)

@ You can only import PROFIBUS GSD-files with hardware types for CI854, and
ﬂ For more information on using Device Import Wizard for importing gsd, xml and
eds files into the Control Builder, refer to:
* AC 800M, PROFIBUS DP, Configuration (3BDS009030%).
* AC 800M, ProfiNet 10, Configuration (3BDS021515%).

. AC 800M, EtherNet/IP DeviceNet, Configuration
(9ARD000014%)

Additional Files for Libraries with Hardware

There are a number of files associated with libraries for hardware and hardware
types. For standard system libraries, it is not possible to perform any operation on
these type of files. For a user-defined library there are some files that can be
managed.

The file types, described below, are associated with the hardware definition and
cannot be changed or replaced.

File Types Associated with Hardware Types
To display the Additional Files dialog box for a hardware type:

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Files.

3BSE035980-600 A 153

Additional Files for Libraries with Hardware Section 1 Basic Functions and Components

The only file type (in a user-defined library) that the user can perform any
operations on is the Help File. See Help File on page 155.

The file types, listed in Table 14, are associated with the hardware type and cannot
be modified by the user.

Table 14. File Types Associated with Hardware Types

File Type Description

Firmware File Firmware file for CPU or communication interface unit.
Update File Update file for firmware; a download support file.
Firmware ldx File Idx file for firmware, used when analyzing a crash dump.
Protocol Handler Protocol handler used by Control Builder.

Control Builder File

Protocol Handler Controller | Protocol handler used by controller.
File

Protocol Handler Idx File Idx file for controller protocol handler, used when analyzing a
crash dump.

File Types Associated with Libraries
ﬂ It is only possible to manage Additional files for a user-defined library.

To display the Additional Files dialog for a library with hardware types:
1. In Project Explorer, browse Libraries > Hardware.

2. Right-click the library and select Properties > Files.

154 3BSE035980-600 A

Section 1 Basic Functions and Components Additional Files for Libraries with Hardware

The file types, listed in Table 15, are associated with the library.

Table 15. File Types Associated with Libraries

File Type Description

Help File A help file (of *.chm type) can be added, replaced, deleted or
extracted, See Help File on page 155

Import File Import file is a device capability description file (for example a
*.gsd file) that has been added with the Device Import Wizard.
This type of file can be deleted (Delete button), or extracted
(Extract button) to a file on disk. By pressing the Wizard button it is
also possible to change the previous done settings. See Wizard .

Wizard
Settings for a previously added device capability description file can be changed.

1. In Additional Files for a library, select the row with the device capability
description file (Import File) and press the Wizard button.

2. In the displayed Device Import Wizard, define the new conversion settings.

Help File
A help file (of *.chm type) can be added, replaced, deleted or extracted for a
customized hardware type, as well as for a user-defined library.

Adding a help file to a customized hardware type or a user-defined library provides
access to the associated help file when you press Flon the user-defined library or on
the customized hardware type, in Project Explorer. For further information about
requirements on customized online help, see the System 800xA Control AC 800M
Binary and Analog Handling (3BSE035981%).

To add a help file to a user-defined library or to a customized hardware type:

1. In Additional Files dialog box, select the Help File row and press the Add
button.

Browse to the help file (of *.chm type) and click Open.

3BSE035980-600 A 155

Delete Hardware Types Section 1 Basic Functions and Components

Replace and Delete

A help file that has been added can be replaced and deleted by selecting the row
with the help file and pressing Replace and Delete button respectively. It is also
possible to delete a device capability file (Import File) for a user-defined library.

Extract and Save a Copy of a File

A help file can be extracted and saved on disk by selecting the row with the help file
and press the Extract button (to the right of the grid). Browse to a place on disk and
save a copy of the file by pressing Save button.

In some exceptional cases there is a need to extract an individual customized
hardware type to a hardware definition file (*.hwd file). In this case, press the
Extract button under Hwd File.

Properties on Hardware Types

In Additional Files for a customized hardware type, it is possible to set a version
information text of maximum 18 character to the help file, by pressing the
Properties button.

Delete Hardware Types
A hardware type in a library can be removed.

ﬂ It is not possible to remove a hardware type from a library, if it is used in a
hardware configuration, in any project of the system (aspect directory).

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

2. Under Hardware types for the library, right-click the hardware type and select
Remove.

Type Usage for Hardware Types

It is possible to display a list of which controller(s) that use(s) the hardware type
together with hardware tree position numbers.

1. In Project Explorer, expand the library with the hardware type under
Libraries > Hardware.

156 3BSE035980-600 A

Section 1 Basic Functions and Components Type Usage for Hardware Types

Under Hardware types for the library, right-click the hardware type and select
Type Usage.

2.

¥& Type Usage

The instances of the type

Path
1.1
1.2
1.3

Cortroller

Controller _1
Controller _1
Controller _1

Figure 55. Type Usage for a selected hardware type.

157

3BSE035980-600 A

Hide and Protect Control Module Types, Function Block Types, Diagram Types, and Data Types

Hide and Protect Control Module Types, Function Block
Types, Diagram Types, and Data Types

When you create libraries with self-defined control module types, function block
types, diagram types, and data types, Control Builder provides you with two
protection features (attributes). These two attributes are called Hidden and
Protected, and can only be set from Project Explorer.

Hidden

Setting the Hidden attribute will completely hide your code from other users. To
hide the code makes it easier to improve your type as often as you like. This is a
common situation when developing types that will be re-used over and over again in
different library solutions.

All types with the Hidden attribute disappear from their normal position in the
Object Type Structure, and can only be located in the Internal Types folder, as a
Hidden aspect.

Protected

Setting your type to Protected will protect the internal type structure from being
seen. This means that only the type itself will be visible, and thus your type
definition will be protected from external exposure, as well as any attempt to
duplicate it. This is extra valuable when you create a type solution for re-use
engineering.

When a protected type is opened in an editor, only the parameter declaration is
visible (read-only). Other declarations like variables and function blocks are not
visible. Only code block tab is shown as a blank page, that is, the IEC 61131-3 logic
is protected. The complete type structure will still be protected from external
exposure.

The attribute available on protected control modules and function blocks types "Sub
Objects visible in PPA" makes formal instances in the protected type visible in Plant

158

3BSE035980-600 A

Section 1 Basic Functions and Components Protect a Self-Defined Type

Explorer if they are configured as aspect objects. It does not make the subobjects
visible in Control Builder.

The Hidden and Protected attribute can also be used for structured data types.

Override

After you have protected your types, you can always override the hidden and
protected attribute temporarily, while you work on improvements. The override
protection property can only be set in Project Explorer.

For self-made libraries with password protection, you must enter the password
before you make an override, see Library Password Protection on page 146

ﬂ The protection cannot be overridden for Control Builder standard libraries. They
cannot be updated or changed by the user.

Setting an override on a library for corresponding hidden and/or protected types
@ will only have impact in Project Explorer. In Plant Explorer, hidden and/or
protected types will remain hidden and/or protected.

Protect a Self-Defined Type
To protect a self-defined type:

3BSE035980-600 A 159

Protect a Self-Defined Type Section 1 Basic Functions and Components

1. In Project Explorer, right-click the type and select Properties > Protection

and Scope. A Protection and Scope window opens.

m Protection and Scope for MyMotor_type ﬁ

Protection Scope

] Protected () Private
Sub Obiects wisible in PP4 © Public

] Hidden

Figure 56. Protection and scope

i N
ﬁ Protection and Scope for MyMotor_type ﬁ
Praotection Scope
[Protected () Private
i@ Public
("] Hidden :
b

Figure 57. Protection and scope

2. Check the desired protection radio button(s) and click OK.

Override Protection Attributes

To override protection for a library or application:

160

3BSE035980-600 A

Section 1 Basic Functions and Components Protect MySupervision Type Example

1. In Project Explorer, right-click the library (or application) and select
Properties > Protection. A Protection Properties window opens.

ﬁ Protection Properﬁ_es‘ ﬁ1

Protection
Set Pagzword Clear Password

Ovenide protection for TankkainLib, that iz, make
pratected objects unpratected, hidden objects
vizible, and allow modifications for thiz pazsword
pratected unit.

Figure 58. Protection properties

2. Check the Override check box (see figure above) and click OK. The Override
feature will have impact in Project Explorer only.

Protect MySupervision Type Example

The following example will show the impact that the Hidden and Protected

attributes may have on a self-defined type called MySupervision_type, which is part
of the library MyTankLib.

A Simplified Library Solution

The library MyTankLib contains three different types, MyMotor_type,
MySupervision_type and MyTank_type. The Motor10 object is located inside
MyTank_type, see Figure 59. As you can see, Motor10 has inherited its definition

3BSE035980-600 A 161

Protect MySupervision Type Example Section 1 Basic Functions and Components

from the type MyMotor_type.
= i My TankLib <\ : - ﬁ M;u'TankLil.J i.D,l’D, Library Yersion
+ |:| Connected Libraries MyTankle /' —-42E Cantral Module Types, Control Module Types
—-FE MyMotor_type, Control Module Type

@ Data Types
1 Function Block Types MyMOtor type / = @ Control Structure, Formal Instance List
- 42k Cortrol Module TypesAk/ --FE MyMotor_type, Control Module Type
= ﬂ MyMotor_type ﬂ SpeedSupervision, MySupervison_type
¥ FeedbackError AlarmEventLib. AlarmCondt L. /' —-FE MySupervison_type, Contral Module Type
4FE SpeedSupervision MyTankLib,MySupervison_type MySuperVISIon ’[ype + @ Control Structure, Formal Instance List
-

42E MySupervison_type —-FE MyTank_type, Control Module Type
-4k MyTark_type <\ = @ Control Structure, Formal Instance List
—-4FE Motorl0 MyTankLib,MyMotor_type MyTank type —-FE MyTank_type, Control Module Type
¥ FeedbackError AlarmEventLib. AlarmCondt —-FE Motorl0, MyMotor_type
4FE SpeedSupervision MyTankLib,MySupervison_type IFE SpesdSupervision

ZFE Hilevelalarm AlarmEventLib, AlarmCondr
FE Lowlevelalarm AlarmEventLib, AlarmCondM

Figure 59. A Library structure before any protection attributes have been set.
(Left) Project Explorer tree. (Right) Object Type Structure in Plant Explorer.

Protect MySupervision Using the Hidden Attribute

MyMotor_type contains a SpeedSupervision object (and a Feedback error object).
The SpeedSupervision object is of the type MySupervision_type. Both
MyMotor_type and the MyTank_type therefore depend on MySupervision_type. To
hide the code inside the MySupervision_type, we must set the attribute Hidden on
MySupervision_type, see Figure 60.

= |:| My TankLib = cﬂ MyTankLib 1,040, Library Yersion
+ |:| Connected Libraries - 42 Control Module Types, Control Module Types
@ Data Types —-FE MyMotor_type, Control Module Type
1 Function Black Types MyMOtOI’ type / = @ Control Structure, Formal Instance List
-1-42F Contral Module Types gFE MyMaotor_type, Control Module Type
—-42E MyMotor_type A// —-FE MyTank_type, Control Module Type
¥ FeedbackError AlarmEventLib. AlarmCondt = @ Control Structure, Formal Instance List
4FE SpeedSupervision MyTankLib,MySupervison_type —-FE MyTank_type, Control Module Type
-4k MyTank_type <a— MyTank type ZFE Motor10, MyMotor_type

—-4FE Motorl0 MyTankLib,MyMotor_type
¥ FeedbackError AlarmEventLib. AlarmCondt
4FE SpeedSupervision MyTankLib,MySupervison_type
ZFE Hilevelalarm AlarmEventLib, AlarmCondr
FE Lowlevelalarm AlarmEventLib, AlarmCondM

Figure 60. MySupervision_type is not shown in Plant Explorer after setting the
hidden attribute. (Left) Project Explorer with SpeedSupervision still visible. (Right)
Object Type Structure where both MySupervision_type and SpeedSupervision are
hidden.

After Hidden is set on the Supervision type, it disappears from both the Project
Explorer and the Plant Explorer. However, MySupervision type can still be traced
via calls from the SpeedSupervision object inside the motor type to our hidden

162 3BSE035980-600 A

Section 1 Basic Functions and Components Protect MySupervision Type Example

supervision type in Project Explorer, see Figure 61.

= ﬂ MyMotor_type
¥ FeedbackError AlarmEventLib. AlarmCondt

g %Tsai:etdj::ervision My TankLib, MySupervison_type Speed S u perViSion ObjeCt
- 9P Mot;rlD My TankLib. MyMator_tvpe Of MySU per’ViSion type

¥ FeedbackError AlarmEventLib. AlarmCondt
¥ Speedsupervision MyTankLib,MySupervison_type

Figure 61. The hidden MySupervision type can still be traced via the
SpeedSupervision object in both the motor type and the motor object.

Setting the Protected Attribute for MyMotor_type

If we do not like to expose SpeedSupervision, why not hide the motor type as well?
The major reason is that it would be impractical to set hidden on the motor type, just
to conceal the function calls from SpeedSupervision (expose the existence of
MySupervision_type).

Besides, SpeedSupervision would still be visible in the motor object (Motor10, etc.)
inside the tank type, see Figure 62.

+-] Connected Libraries
@ Data Types

1 Function Black Types
MyMOtor type _» -1-42F Contral Module Types
h|dden -4k MyTark_type

—-4FE Motorl0 MyTankLib,MyMotor_type SpeedSuper’ViSion Object
¥ FeedbackError AIarmEventLib.AIarmCondM/ inside M0t0r1 0

4FE SpeedSupervision MyTankLib,MySupervisofi_type
ZFE Hilevelalarm AlarmEventLib, AlarmCondr
FE Lowlevelalarm AlarmEventLib, AlarmCondM

Figure 62. The Hidden attribute on MyMotor type would still allow showing objects
(children) of the MySupervision type in any new motor object.

Furthermore, we must be able to select the motor type every time we create a new
motor object.

Therefore, for re-usability reasons, we cannot hide the motor type like we did with
the supervision type, but, we can set the Protected attribute, since a protected type
will still be visible in Project Explorer, while the type definition is hidden according
to Figure 63.

3BSE035980-600 A 163

Protect MySupervision Type Example Section 1 Basic Functions and Components

= i MyTankLib 1.0/0] ;ﬂ MyTankLib 1,00, Library Yersion
+ |:| Connected Libraries - 42 Control Module Types, Control Module Types
@ Data Types —-4FE MyMator_type, Contral Madule Type
1 Function Black Types = Q Control Struckure, Formal Instance List
-1-42E Contral Module Types4// MyMOtor type FFE MyMotor_type, Control Madule Type
AT ‘ s .-
EF Iy Motor_type aﬂer Protected FFE MyTark_type, Control Module Type
—-42E MyTank_type = Q Control Struckure, Formal Instance List
4FE Motor1d MyTankLib,MyMokor_bype - 4FE MyTark_type, Control Module Type
ZFE Hilevelalarm AlarmEventLib, AlarmCondr FFE Motor10, MyMator_type

FE Lowlevelalarm AlarmEventLib, AlarmCondM
Figure 63. Protected attribute on MyMotortype, which will hide the type definition.

In this case, a protected motor type will still let the user create new motor objects of
the type MyMotor_type in other libraries, like the one in Figure 64, but without
knowing about the background calls from SpeedSupervision.

Bl slarmEventlib 1.0/0
Bl mMyTanklib 1.0/0
@ Data Types
1 Function Black Types
-1-42F Contral Module Types
--42E MySecondTank_type
4FE Motor100 MyTankLib,MyMotor_type

Figure 64. Motor100 object of the MyMotor_type, re-used in another library with
MyMotor_type protected and MySupervision_type hidden.

ﬂ For more information about control module types and function block types, see
System 800xA Control AC 800M Planning (3BSE043732%).

164 3BSE035980-600 A

Section 1 Basic Functions and Components Task Control

Task Control

A task is defined as an execution control element that is capable of starting, on a
periodic basis, the execution of a set of POUs (Programs, Function blocks, functions
etc.).

The Control Builder setup three tasks (Fast, Normal and Slow) by default, provided
that an AC 800M Control Project template has been selected. The tasks are
connected to their respective diagrams (one task per diagram). The tasks serve as
'work schedulers' for the diagrams and contain settings for interval time and priority.
However, setting interval time and priority is not enough; you must also tune your
tasks.

ﬂ To learn how to tune tasks, see System 800xA Control AC 800M Planning
(3BSE043732%*) manual.

If a diagram does not have a task connected, it will run by the task connected to the
corresponding Application.

You may create and connect several tasks to a controller, but experience show that
more than five tasks in each controller makes it difficult to overview.

The Control Builder provides a Task Analysis tool that predicts the execution of an
application by the controller before loading it onto the controller. See Task Analysis
on page 187 for more information.

Task Connections

A task can be connected to a program, a function block, a control module or a single
control module, a diagram, and several tasks may execute in the same controller. An
application can also be connected to a task, and all POUs in an application execute
in this task, unless otherwise specified. A task can only execute POUs in one
application. Hence, POUs from different applications can not be connected to the
same task.

Do not re-connect tasks to applications unless it is necessary, as this might

A disrupt the task execution during re-configuration. Else change the parameters of
the connected task (to fit the needs). A SIL3 task re-connection might lead to a
shut down of the controller.

3BSE035980-600 A 165

Task Connections Section 1 Basic Functions and Components

Create a New Task
To create and configure a new task:

1. Expand the Hardware tree, until you find Tasks.
- Controllers
[l Controller_t {172.16.0.0)
+ Connected Applications
+ Connected Libraries
+ Hardware AC S00M

- ‘@ Tasks
@1 Fast
£&1 Mormal
=

"= Access Variables
2. Right-click Tasks and select New Task. A ‘New Task’ window opens.
3. Name the task.

MName: |Superfast

[ak.][Eancel]

4. Click OK.
= ‘@ Tasks
i

Superfask
@I Fast

£81 Maormal
£81 slow

Figure 65. A new task has been created.

After the task has been created, it is time to configure the task with new properties.

5. Right-click the new task (Superfast) and select Properties. A “Task Properties’
window opens.

166 3BSE035980-600 A

Section 1 Basic Functions and Components Task Connections

Task Properties - Controller_1 - Superfast

Tazk Values
Reguested: Uszed: Actual: b &

Interval Time [me]: 1000 1]

Execution Time [ms]:

Offset [ms]: 0 0
Pricrity: 2 - High

[] Enable latency supervision

[)

Firzt zcan execution time [mz):

Output Signals [Debug
Figure 66. A Task Properties window for configuring a task.

6. Change the interval time to 40 ms and Priority to 1-Highest. Click Apply
followed by Close.

7. Right-click Tasks and select Editor to view the new task. A ‘Task Overview’
window opens.

MNarme Priority Interval |[Actual [Max [Actual Max Offset |Actual |Max |Accepted |[Actual [Max Latency |First

Time (Interval Interval [Execution |Execution Offset |Offset |Latency |Latency [Latency |[Alarm [Scan
Time [Time |Time Time Limit |Execution

Tirme
1 |Superfast|1 - Highest 40 0 0 0 0 0 0 0 TR, 0 0 [£A 0
2 |Fast 2 - High a0 0 0 0 0 0 0 0 TR, 0 0 [£A 0
3 |Mormal 3 - Maormal 250 0 0 0 0 15 0 0 TR, 0 0 [£A 0
4 | Slow 4 - Lowr 1000 0 0 0 0 25 0 0 TR, 0 0 [£A 0
€15\ Tasks @@ >

Servicedccounk

The Task Overview window lists all the tasks with each property settings. To change
the settings for a certain task:

8. Select a task in the Task Overview window and open Tools > Task Properties.

Right-click a task directly in the hardware tree and select Properties to open the
@ Task Properties window directly.

3BSE035980-600 A 167

Task Connections Section 1 Basic Functions and Components

ﬂ Select Tools > Reset Max, to reset all tasks that appear in the editor.

Connect a Task to a Program
To connect the task SuperFast to Program1:

1. Right-click Program1 and select Properties > Task Connection. A “Task
Connection’ dialog box opens.

¥X Task Connection

Inztance: Application_1.Programi

Task:

Controller_1.5uperfas hd

[1]4] [Cancel]

2. Select a task from the drop-down menu (here SuperFast) and click OK.

= Programs
Program] - (Controller_1,Superfask)
Programz - (Controller_1,Marmal)
Programs - (Controller_1, Slawd

Figure 67. Programl has changed task to Superfast.

Function Blocks with Different Task Connections

You can connect function blocks inside a program to a task different from the one
connected to the program, (right-click on the function block and select ‘Task
Connection’).

However, variables inside the function block that pass values to and from the
function block are controlled by the program task. The code in the function block
will run according to its task, but the parameters will be updated according to the
program task. This means, in practice, that the function block in a program can only
run at a slower, or a least at the same, speed as the program. However, if you use

168 3BSE035980-600 A

Section 1 Basic Functions and Components Task Execution

v

external variables or connect I/O directly to the function block, there will be a direct
reference, independent of the task cyclicity of the function block.

To set-up specific time intervals and task priority different from the task connected
to the application whilst for example, designing libraries, can be done by declaring
and using global variables, or by using parameters.

For more information, see Control the Execution of Individual Objects on page
113.

Task Execution

This sub-section describes priority, interval time and offset for task execution.
The next sub-section, Overrun and Latency on page 178, describes handling of
too long task executions, delays, and load balancing etc.

There are four important task parameters that can be set to optimize program
execution:

* Priority, which sets the execution order for tasks, see sub section Priority
below.

» Interval time, sets the task intervals during the program is executed, see sub
section Interval Time on page 172.

* Offset, a parameter that helps you to avoid unexpected delays in execution
when tasks are scheduled to execute at the same time. See sub section Offset on
page 173.

* Execution time, for best real time behavior and communication performance,
avoid extensive continuous execution. See Execution Time on page 178 and
also Communication Considerations on page 176.

All POUs connected to a task execute with the same priority, interval time, offset,
and execution time.

Task Priority

There are six levels of priority: Time Critical, Highest, High, Normal, Low, and
Lowest, numbered from 0 to 5. The tasks are executed according to their priority,
where the time-critical task has the highest priority. A task with higher priority may
interrupt any task with lower priority, but a task cannot interrupt another task with

3BSE035980-600 A 169

Task Priority

Section 1 Basic Functions and Components

the same priority. There can only be one time-critical task. Such a task may interrupt
the execution at any point, while other tasks may only interrupt execution at defined
points.

An ordinary (non-time-critical) task can be interrupted:

e at the start of any code block,

e at backward jumps, for example for, while, repeat statements.
A time-critical task has special properties.

* The task is not driven by the same scheduler as the rest of the tasks. Instead, the
task is driven from the system’s real-time clock (hence the high precision).

* The tasks have high precision in execution time. The resolution is 1 ms.
* A change to/from time-critical priority in Online mode is not possible.

* A change to/from time-critical priority in Offline mode requires re-compilation
of the application.

Consider the following points, when using the time-critical priority.
* Only one time-critical task per controller is allowed.

* The execution time for a time-critical task (priority 0) must not exceed 100ms.
This restraint prevents the task from blocking other functions, for example
communication.

* All functions cannot be called from the program connected to the task. You
cannot set time-critical priority if the code contains invalid instructions (this is
checked during compilation). The time-critical task interrupts execution at any
time, which means that execution might be interrupted mid-statement.

* If a power failure occurs while the time-critical task is running, the execution of
the current code block is completed (assuming that it can be completed within
1 ms). For a warm start to be possible, no code block in the time-critical task
may take more than 1 ms to execute.

Task priorities 1-5 can be set by using the firmware function SetPriority. This
function is located in the System folder.

Consider the following points, when using task priority in HI controller:

* In HI controller VMT has the highest possible task priority. SIL3, SIL.2 and
non-SIL can not share the same priority and have the priority in order listed.

170

3BSE035980-600 A

Section 1 Basic Functions and Components Task Priority

* Only one task can be connected to a SIL3 application. If more than one task is
connected, compilation error is generated. To download remove all tasks except
SIL3 task.

* The SIL3 tasks must have higher priority than non-SIL and SIL1-2 tasks in the
controller. If not compilation error is generated. Decrease the priority of the
non-SIL and SIL1-2 tasks or increase the priority of the SIL3 task to enable
downloading.

* Itis not recommended to have a task with the same or higher priority than the
VMT task, regardless of SIL level. If the VMT task is not the only task with the
highest priority, a compilation warning is generated. The user should decrease
the priority of any task (SIL or non-SIL) which has the same, or higher priority
than the VMT task.

* Firmware functions that tries to manipulate task parameters from 1131 code
does not work for SIL tasks that is SetPriority and SetIntervalTime.

* Higher prioritized tasks cannot interrupt a lower prioritized task during IAC
fast data copy in/out. If the number of Communication Variables in lower
prioritized SIL task exceeds the limits defined in Communication Variable
Limits Dialog, then either perform a proper task tuning such that the high
priority of the task is not crucial or increase the accepted latency.

3BSE035980-600 A 171

Interval Time Section 1 Basic Functions and Components

Interval Time

The interval time, during which the program is executed, is set in the Task
Properties dialog box. Default values are 50 ms (Fast), 250 ms (Normal) and 1000
ms (Slow). You can change these values at any time. For a time-critical task, the
interval time can be as short as 1 ms. The interval time of tasks of priority 1-5
cannot be less than 10 ms. The resolution is 1 ms.

ﬂ If two tasks have the same priority, and they both wait for execution, the task with
the shortest interval time will be executed first.

All task intervals must be multiples of each other. The shortest interval is the
@ "time base".

Execution Example

Figure 68 shows two tasks executing in the same system. Task 1 and task 2 have
interval times of 30 and 200 ms, and execution times of 10 and 50 ms, respectively.

When the tasks have been assigned the same priority, the execution start time of task
1 is very much delayed. It also drops one execution.

D Task 1. Execution time: 10 ms, Interval time: 30 ms
A . Task 2. Execution time: 50 ms, Interval time: 200 ms, Offset: 80ms

N,
T T T 1 »
30 90 150 210 270 330 390 450 510 Time (ms)

Figure 68. Execution of two tasks with the same priority.

In Figure 69, task 1 has higher priority than task 2, and interrupts the execution of
task 2. Hence task 1 is not delayed much by task 2.

172 3BSE035980-600 A

Section 1 Basic Functions and Components

Offset

Offset

v

D Task 1. Execution time: 10 ms, Interval time: 30 ms
\ . Task 2. Execution time: 50 ms, Interval time: 200 ms, Offset: 80ms

N
»

T T 1
30 90 150 210 270 330 390 450 510 Time (ms)

Figure 69. Execution of two tasks with different priorities.

The compiler will detect inappropriate offset settings.

The offset of each task must be equal or greater than the sum of the execution

times of all higher-priority tasks.

If your tasks are scheduled to execute at the same time you will receive a warning
during download. However, this compiler function is merely calculating theoretical
periodic executions, which means that it will not warn you for task collision caused
by, for example a too close offset time. Therefore, consider the compiler warning as
a first preliminary check provided to you and not as a guarantee that will prevent

task collisions.

Two tasks will be scheduled to start execution at the same time if the greatest

common divisor of the tasks interval times divides the difference in the tasks offsets.

Turning off Task Collision warnings

You can turn off the task collision warning from the Project Explorer.

1. Right-click the Project item and select Settings > Compilation Warnings

from the context menu. A Compilation warnings dialog box will open.

2. Click to clear Task Collisions check box and then OK.

3BSE035980-600 A

173

Offset Section 1 Basic Functions and Components

When tasks are scheduled to execute at the same time, the task with the highest
priority will be executed first. If tasks have the same priority the task with the
shortest interval time will be executed first. Offset is a mechanism that can be used
to avoid unexpected delays in execution when tasks are scheduled to execute at the
same time.

Do not change task offset for a controller with a running application. This may
@ result in that the task executes one more time than expected.

In Figure 70 and Figure 71, the execution of two tasks with the same priority with
interval times of 50 ms and 100 ms is shown. When both tasks have a 0 ms offset
(Figure 70), the execution start time of task 2 is delayed, and the actual interval time
for task 2 is influenced by variations in the execution time of task 1.

[Task 1

A W Task2

A -
7
50 100 150 200 250 Time (ms)

Figure 70. No offset. The two tasks have the same priority, but different interval
times (50 and 100 ms).

If task 2 is assigned an offset, as in Figure 71, neither task is delayed, and the actual
interval time for task 2 will not be affected by task 1.

174 3BSE035980-600 A

Section 1 Basic Functions and Components Offset

[Task 1

A [Task2

»
L
50 100 150 200 250 Time (ms)
Figure 71. Offset is set on task 2. The two tasks have the same priority, but different
interval times (50 and 100 ms) and are thus executed at the requested times.

An application starts to execute by scheduling all tasks in the application to execute
at the same time. The task with highest priority is executed first, and if tasks have
the same priority, the task with the shortest interval time will be executed first.

Execution Synchronization

When a task has finished execution of the first scan after application start at time ¢,
the start of its next execution is synchronized to time O (the time the controller
started to execute).

t=n * (interval time) + d, 0 <d < interval time

d is the time from the start of the current interval time, to when the task finished
execution in the current interval. The synchronization to time zero (0) implies that
the start of the next execution will be at the first start point after the current time.

If offset = 0, the task will be scheduled to execute at time (n + 1) * (interval time).
However, if the time to the start of the next execution, (interval time) - d, is less than
10 ms, the task will be scheduled to execute a time (n + 2) * (interval time).

If offset > 0, then if offset > d, the start of the next execution will be at a time

n * (interval time) + offset. If offset < d, the start of the next execution will be at a
time (n + 1) * (interval time) + offset. If the time to the start of the next execution is
less than 10 ms, the interval time will be added to the start time of the next
execution.

3BSE035980-600 A 175

Offset

Section 1 Basic Functions and Components

The same synchronization of execution time will be performed after a change in
interval time or offset.

Time critical task is not synchronized to time zero (0).

Communication Considerations

POU execution has higher priority than other functions, such as communication.
These functions are performed in the gaps between the execution of different tasks.
If several tasks with long execution times are executed immediately, one after the
other, the time gaps are few but long (see Figure 72).

[Task 1
A M sk
. Task 3

»
I Ll
50 100 150 200 250 Time (ms)

Figure 72. The result of having no offset for three tasks with long execution times.
The gap (T,+Ty) is the time available for the execution of other functions, for
example communication.

176

3BSE035980-600 A

Section 1 Basic Functions and Components Offset

The offset mechanism can be used to make the time gaps more frequent (see
Figure 73).

D Task 1
A . Task 2
D Task 3

Ta Tb

N
T L
50 100 150 200 250 Time (ms)
Figure 73. The result of assigning offset to tasks 2 and 3, is that the time available
Sfor the execution of other functions occurs more often (T,).

The same processor handles communication and IEC 61131-3 code. This means
that you have to consider how much code you include in each task, when you tune
the tasks.

Assume that we have a task running code with an execution time of 500 ms and an
interval time of 1000 ms. This means a cyclic load of 50%

(load = execution time / interval time). But, this also means that no communication
can be performed during the 500 ms execution (since communication has lower
priority than the task).

Now, assume that we have divided the code into 4 tasks such that each one
corresponds to 125 ms of the execution time. The interval time is still 1000 ms,
hence the load is still 50%. But, if we set the offset for the 4 tasks to 0, 250, 500, and
750 ms, the result will be completely different. Now, code will be executed for

125 ms, after which there will be a pause when communication can be performed.
Following this, code will be executed for another 125 ms followed by another pause
when further communication can be performed. Hence, we still have the same cyclic
load, but the possibility for communication has increased considerably.

To conclude, try to tune your tasks using offsets before you change the priority.
Actually, the only time you have to change the priority, is when two tasks have so
much code that their execution cannot be “contained” within the same time slot, that
is, the total execution time exceeds the length of the time slot. It is then necessary to
specify which of the two tasks is most important to the system.

3BSE035980-600 A 177

Execution Time Section 1 Basic Functions and Components

ﬂ More information about task tuning can be found in the System 800xA Control AC
800M Planning (3BSE043732%).

Execution Time

The maximum allowed execution time for time-critical tasks must not exceed
100ms. For load balancing purposes this is also recommended for all tasks in a AC
800M High Integrity controller. In a PA controller, the execution time should not
exceed 200 ms. When a task executes for a longer period of time this will
disturb/starve other lower prioritized functions in the system such as communication
(MMS and others). See Communication Considerations on page 176.

ﬂ It is recommended to split applications in several tasks (or even split applications
into several applications) such that each task execution time is less than 100 ms
and to use task offset configuration to allow for other system functions to execute
before the next 1131 task is scheduled.

ﬂ The maximum allowed execution time does not include the first scan execution
time.

Overrun and Latency

Overrun and Latency are two functions for supervising a task. Overrun checks if
each task finishes before it is supposed to start the next time, and detects if the task
runs for too long. Latency on the other hand, checks that a task starts on time (on
each cyclic start), and detects if the task starts too late.

The Overrun function is configured per controller via the Controller Settings dialog
box, while the Latency function is configured per task (and SIL classification per
task) via the Task Properties dialog box. Both Overrun and the Latency function
uses the Error Handler to report any errors.

ﬂ For High Integrity controllers:

Overrun Supervision is automatically enabled and cannot be switched off. Load
balancing is not available in High Integrity controllers.

Latency Supervision is mandatory and therefore automatically enabled for all
SIL tasks.

178 3BSE035980-600 A

Section 1 Basic Functions and Components Overrun Supervision

Overrun Supervision

Overrun occurs when the execution of a task takes too long, that is, the task is still
executing when the next execution of the task is scheduled to start.

By setting the maximum number of consecutive overruns allowed (missed scans),
you can control when a fatal overrun error is considered to have occurred, and
consequently configure a controller reaction.

These reaction settings are:
* Nothing,

* Stop Application,
e Reset Controller.

In an AC 800M (non-Hi integrity) controller, load balancing and overrun
supervision functions are mutually exclusive, whereas the Load Balancing function
is default. Hence, the overrun supervision is turned off. For more information about
load balancing and cyclic load, see Load Balancing on page 184.

Configuring Overrun Supervision

Overrun supervision is set for each controller in the Controller Settings dialog box.
To select Overrun Supervision for a controller, follow these steps:

1. Expand the Hardware tree until the controller (for example, Controller_1).

2. Right-click the controller and select Properties > Controller Settings from
the pop-up menu. A ‘Controller Settings’ dialog box opens.

3BSE035980-600 A 179

Overrun Supervision Section 1 Basic Functions and Components

¥E Controller Setti ngs

Load Balancing

¥ Enable overload cormpensation:

Fatal Crverrun

Reaction: | J
Lirnit: j Interval cycleis)

Online Upgrade

Handaowver lirnit: 3000 ms

Error Reaction

System Diagnostics lExecutiDn] jfle]]

Actions Log Event Controller

Severity Shutdown

1-Law ™ ™ ™

2-Medium ¥ ™ ™

3 - High = I r

4 - Critical ¥ = 3

5 - Fatal = ¥ =

OF | | Cancel | Help |

Figure 74. Controller Settings dialog box for a non-High Integrity AC 800M

controller.
3. Uncheck Load Balancing, (Enable overload compensation check box).

4. Select a reaction for Fatal Overrun from the Reaction drop-down menu, (Reset
Controller or Stop Application will activate the Limit field).

5. Enter the number of consecutive overruns allowed in the Limit field, (number
of consecutive overruns before a fatal overrun is considered to have occurred).

6. Use the tabs under Error Reaction to set-up actions for different error types and
severity. (For information on Error Reaction settings, see Controller Settings in
Non-High Integrity Controllers on page 424).

7. Click OK.

180 3BSE035980-600 A

Section 1 Basic Functions and Components Latency Supervision

@ If overrun errors occur, re-program the faulty task to decrease load.

Latency Supervision

Latency occurs when the execution of a task is delayed, that is, the task starts to
execute later than scheduled. The latency function will supervise your tasks (start on
time on each cyclic load), and detect if a task starts sooner or later than scheduled.

Latency is activated in the Task Properties dialog box, where you set the acceptable
latency in percent (accepted latency in percentage of the interval time). The lowest
accepted value for Latency Time is always 10 ms.

Configuring Latency Supervision

Latency supervision is set for each task in the Task Properties dialog box. To select
Latency Supervision for a task, follow these steps:

1. Expand the Hardware tree, until you find Tasks.

3BSE035980-600 A 181

Latency Supervision

Section 1 Basic Functions and Components

2. Right-click a task and select Properties from the pop-up menu. A “Task

Properties’ dialog box opens.

Task Properties - Controller_1 - Normal

Enable ——— P

Latency supervision
check box

Tazk Values

Fequested:
Interval Time [ms]: 280
Execution Time [mz]:
Offset [mz]: 158
Pricrity: 3 - Momal w

Enable latency supervizion
Accepted latency:

Latency alarm limit:

First scan execution time [ms]:

Output Signals

o) Always update output signals first in nest

execution

® Always update output signals last in
execution [default].

Remark

Used:

0

3 - Normal

25

[ebug

Spztem Yalues

X

Actual: Max:

Apply

l [Cloge

] [Help

3. Select Latency, (check Enable latency supervision check box).

4. Enter latency percentage into the Accepted latency entry field. The actual used
latency time is shown to the right of the entry field (here 25 ms). The lowest
accepted latency time is 10 ms.

5. Click Apply. Note how the actual latency time changes if the accepted latency
percentage exceeds 10 %.

6. Click OK.

Latency Alarm Limit

If latency error occurs, tune the tasks. Information about task tuning can be found
in the System 800xA Control AC 800M Planning (3BSE043732%).

A latency warning is issued if latency is above 70% of accepted latency. A system
alarm, actual latency in ms is generated, and added to the system log. A yellow

182

3BSE035980-600 A

Section 1 Basic Functions and Components Task Abortion

warning @ is written to the Actual column of Latency alarm limit and “Latency
high alarm limit exceeded” is written in the Remark field of the task properties
dialog box.

Latency is measured on a periodic basic, the time from the start of one execution to
the start of next execution is measured. The latency is then calculated as the
difference between this value and the interval time. Latency can then be both
positive and negative. The maximum latency time is the absolute value of actual
latency.

@ If requested offset is O it is possible that actual offset is large, compared to actual
latency.

Example

Task A: Interval Time=150 ms, Offset=0 ms, Priority=4 - Low and
Execution Time=1 ms.

Task B: Interval Time=150 ms, Offset=0, Priority=3 - Normal and
Execution Time=17 ms.

In this case the actual offset of Task A is about 18 ms and actual latency vary from
-1 to +1 ms.

The execution of task A is delayed about 18 ms for each interval, which results in an
actual offset of 18 ms. This delay is repeated for each period which result in a small
actual latency, -1 to +1 ms.

If the interval time of Task A is changed to 50 ms the actual latency of Task A will
assume the values -18 ms, 0 ms, +18ms. Actual offset will assume the values 0 ms
and 18 ms.

Task Abortion

If a task is aborted, the corresponding application will be stopped. The following
criteria apply to a task abortion.

Time-critical Tasks

Time-critical tasks (priority 0) are aborted when the execution time exceeds 300 ms.
Time-critical tasks are also aborted if a fatal overrun error occurs. Criteria for fatal
overrun errors are set in the Controller Settings dialog box, see also Overrun

3BSE035980-600 A 183

Load Balancing Section 1 Basic Functions and Components

Supervision on page 179).

ﬂ In a High Integrity controller running SIL-tasks, error handling is stricter.
Compared to a non-SIL application, less severe errors might lead to an
application being stopped.

No time critical tasks are allowed in a High Integrity controller.

Non Time-critical Tasks

Non-time-critical tasks (priority 1-5) are aborted when:
* The execution time exceeds 10 seconds.

e The execution time exceeds (100 * IntervalTime).

If overrun supervision is enabled, non-time-critical tasks are also aborted if a fatal
overrun error occurs. Criteria for fatal overrun errors are set in the Controller
Settings dialog box. See also Configuring Overrun Supervision on page 179.

This means that if IntervalTime is set to 100 ms or higher (100 * 100 ms = 10
seconds), tasks will be aborted if they have not been executed within 10 seconds.

If Interval Time has been set to <100 ms, tasks will be aborted if they are not
executed within (100 * IntervalTime).

Load Balancing

The cyclic load is the percentage of controller CPU power used for program
execution of application code. If the cyclic load exceeds 70% in the controller,
so-called load balancing is initiated automatically. The interval time for all tasks,
except the time-critical task, is then generally increased, to limit the cyclic load to
70%. Load balancing is not available in High Integrity controllers.

If the cyclic load then falls below 70% again, the interval time will normally be
decreased in all tasks, except for the time-critical task. However, the interval time
never falls below the original defined interval time.

184 3BSE035980-600 A

Section 1 Basic Functions and Components Load Balancing

Whenever the interval time is changed due to load balancing, a SystemSimpleEvent,
expressed in percent (%) of the actual interval time, is generated, and added to the
system log.

Load balancing for the time-critical task is handled as follows (this differs from
@ non-time-critical tasks). The interval time for the time-critical task is increased,
whenever its execution time exceeds 50% of its interval time.

For example, if a time-critical task has an interval time of 100 ms, and the
execution time becomes 54 ms in an interval, then the new interval time becomes
108 ms. However, the interval time must be reset manually, after it has been
increased. The interval time of the time-critical task is never decreased
automatically, as for the other tasks.

Change the Requested Interval Time to its original value, or another suitable
value, in the Task Properties dialog box(in Online mode). Press Apply or OK to
bring the reset into effect.

Whenever the interval time is increased for the time-critical task, due to load
balancing, a SystemSimpleEvent, expressed as the actual interval time in ms, is
generated and added to the system log.

3BSE035980-600 A 185

Non-Cyclic Execution in Debug Mode Section 1 Basic Functions and Components

Non-Cyclic Execution in Debug Mode

A task can be set up for non-cyclic execution. Use non-cyclic execution to simplify
the debugging of a program.

Debug Mode

Debug mode allows you to debug an application by halting the application running
in the controller, and executing the code one execution at the time.

Debug mode is enabled from the Task Properties dialog box (right-click the task in
Project Explorer, and select Properties).

ﬂ Tasks marked with SIL cannot be set in Debug mode.

When you have selected Enable debug mode, you can halt the cyclic execution of a
task by clicking Halt. When the task is halted, you can execute the task once by
clicking One Execution. (This is referred to as “non-cyclic execution”.)

Other tasks will not be affected if one task is set up for Debug mode, they will run in
normal cyclic execution mode.

To return to normal cyclic execution of the task, click Run.

ﬂ A task in Debug mode is indicated in Project Explorer with a warning icon (a
yellow circle with a black exclamation point).

Functions based on the real-time clock (PID controllers, timers, etc.) cannot be
A properly debugged in Debug mode.

Timer functions will take into account the actual time elapsed since started,
regardless if, for example, the task is halted in Debug mode.

186 3BSE035980-600 A

Section 1 Basic Functions and Components Task Analysis

Task Analysis

The Control Builder provides a Task Analysis tool to predict the execution of tasks
in controllers before downloading the application to a controller.

The Task Analysis tool provides the following functions before the download of the
application:

* Analyzes the task scheduling in the application.

* Presents a graphical representation of how the tasks will execute with the
application.

* Detects possible overload situations before the download of the application.
The tool detects problems such as task latency, task overrun and overload of
task execution.

* Allows remedial actions by providing the option to change the execution time
of the tasks and view the updated analysis.

ﬂ The update of the task execution time using the Task Analysis tool updates the
task for analysis only. The actual execution time of the task need to be changed
by updating the Task Values in the Task Properties dialog box in Control Builder.

The Task Analysis tool can be used before normal download and before the
download using Load Evaluate Go (LEG). For initial download, the execution time
of the tasks is assumed to be 1ms for the analysis.

If the task configuration in the Control Builder project is changed before a normal
download, the Task Analysis dialog box automatically appears during the normal
download. The dialog box does not appear automatically if LEG is used for the
download.

To open the Task Analysis dialog box in Control Builder in Offline mode or Online
mode, go to Tools > Task Analysis.

During download, to enable/disable the Task Analysis function, go to Tools > Setup
> Station > Application Download, and edit the value in the
EnableTaskAnalysisTool text box to true or false. The default is true.

3BSE035980-600 A 187

Exploring the Interface Section 1 Basic Functions and Components

Exploring the Interface

The Task Analysis dialog box displays a summary view, a detailed view, and the
status of the summary as shown in Figure 75.

| Summary view Detailed view |

oSl Task Analysis =k

File Tools
»

Help

@ Controller_1
© Controller_2
@ Controller_3

'iﬂErmrs. 0 Warnings

Controler_1 | Cortroller_2 [Controler_3]

Prionity
Fast 1 [] (1] (]]
Nomal | gy n n
Sow | mm
Time (ms)
100 200 300 400 500
MNormal execution: [Latency: NN Intemupted exscution: Cvemn. Passive LEG execution:

Figure 75. Task analysis tool opened from Tools > Task Analysis

Summary view

This view lists the controllers to which the applications are downloaded. A circular
icon (for example,) appears beside each controller indicating the various states.

The indications are:
e Redicon: Error
* Yellow icon: Warning
e Greenicon: Ok

If the task execution contains errors or warnings, the description of the error or
warning is also displayed.

188

3BSE035980-600 A

Section 1 Basic Functions and Components Exploring the Interface

Detailed view

This view displays each controller (listed in Summary view) in a separate tab, as
shown in Figure 75.

Click each tab to open the graph showing the task execution of that controller. The
tasks are plotted on the graph with the Priority on the Y-axis and the Time

(task execution time) on the X-axis. Moving the cursor over each task name opens a
tooltip displaying its execution time, interval time, and offset.

Status

This is found at the bottom of the tool interface as shown in Figure 75. It displays
the total number of errors and warnings, and the icon (in red, yellow or green). This
helps to decide if it is safe to download the new application.

The significance of the indications are described below:

* Red — the new application cannot be downloaded as there is a risk of
overloading the controller.

* Yellow — the download of the new application may cause overloading of
controller. The user must, based on analysis, decide if it is feasible to go ahead
with the new application download.

* Green — the new application is safe to be downloaded to the controller.

3BSE035980-600 A 189

Exploring the Interface

Section 1 Basic Functions and Components

Task Settings lcon

ﬂ Task Analysjs
File Tooli

v X W

Help

Error/Warning Descriptions

| =@ Controller_1

- Waming Task Slow Was Intemupted By Task Fast. Occured at 60 Ms.
Controller_2
- Controller_3

@ Emor Task Momal Was Delayed 5 Ms By Task Fast. Occured at Time 5 Ms
& Emor Task Slow Was Delayed 10 Ms By Task Momal. Occured at Time 15 Ms

L
Waming Time Gap Task MNomnal. The Time Gap From Last Finished Task Until Start of This Task Is 7 Ms. Occured at 43 Ms,

Controller_1 | Controller_2 | Controller_3 |

Prigrity
Fast | M |] L] |] |
Normal |
Slow I .
Time (ms)
100 200 300 400 500
Normal Execution: I Latency: Interrupted Execution: Overrun: mm

@ 2 Emors, 2 Wamings

Status

Figure 76. Task Analysis tool with error and warning indications

Task Analysis During Download and LEG Download

If the task configuration in the Control Builder project is changed before the
download, the Task Analysis dialog box automatically appears during normal
download, with the additional options to accept or cancel the download (& and
icons). See Figure 77. These options also appear in the Task Analysis dialog box

that is invoked manually during LEG.

190

3BSE035980-600 A

Section 1 Basic Functions and Components Exploring the Interface

ﬂ If the Task Analysis dialog box shows errors, the s’ icon is not activated.

Accept

Reject

all [Task finalysis =ulil=k
Fil' qus Help

v XIE

© Controller_1

@ Controller_2
@ Controller_3

Centroller_1 | Controller_2 | Controler_3|

Priofity
{8} Fax 1 1 1] 1]
{gh Nomal | g n n
{E} Sow | mm
A Time (ms)
100 200 300 400 500
Normal execution: [Latency: BN Intemupted execution: (0,7 T, F— Passive LEG execution:

@0 Errors, 0 Warnings

Execution Time = 1 ms
Figure 77. Task Analysis with additional options to accept or cancel the download

The execution time is fetched from the controller. At LEG download, the execution
time of the evaluated application is the same as for the old Active application.

ﬂ If a task is not running in the controller when the execution time is requested, the
tool uses 1ms as the execution time, and the & icon appears beside the
task name. See Figure 77. The % icon also appears if the task execution time is
modified for analysis.

3BSE035980-600 A 191

Modifying Task Execution Time Section 1 Basic Functions and Components

Modifying Task Execution Time
The Execution Time of each task can be modified for analysis.
To modify the execution time of a task for analysis:

1. On the detailed view in Task Analysis dialog box, open the tab screen of the
controller for which the task need to be changed.

2. Click the % icon, or from the toolbar, select Tools > Settings.

The Task Settings ControllerName dialog box appears as shown in Figure 78.

Fm Task Sming;{:ontrnlr;___ S
Task Mame Hew Execution Time Execution Time Ok

Fast 5 5
o o 0 mancn
Slow 2 15 Help

Length of Timeline: 1000 me

Figure 78. Task settings
3. Modify the execution times under New Execution Time column
corresponding to the task name, and click OK.

The graph is updated as per the new execution time, and the #} icon appears
beside the task name of the modified task.

Error and Warning Categories

The errors and warnings that are displayed by the Task Analysis tool are generated
based on the following categories of analysis:

* Accepted latency
e Task latency
e Task overrun

192 3BSE035980-600 A

Section 1 Basic Functions and Components

Error and Warning Categories

* Interrupted execution

* Cyclic load overload

* Total load overload

» First scan execution limit
* Too low FDRT

e Internal diagnostics

Table 16 describes these categories and the corresponding reasons for errors and
warnings.
In the Task Analysis dialog box, these errors and warnings are displayed with
relevant messages that describe the problem.

Table 16. Categories of errors and warnings in Task Analysis tool

Category

Reason for Warning

Reason for Error

Accepted latency

An Accepted Latency value that is
set below 10% (default value) of the
Interval Time.

Task latency

The latency is detected and it is not
within the Accepted Latency, but the
latency supervision is disabled.

The latency is detected and it is
not within the Accepted Latency,
and the latency supervision is
enabled.

Task Gap

The time gap is too small (less than
20% of the execution time of the
task last executed) or <= 5ms.

The time gap is too small (less
than 10% of the execution time of
the task last executed).

Task overrun

The overrun is detected, that is,
the task has not finished executing
one scan before the next cycle is
supposed to start.

Interrupted execution

The task is interrupted by a higher
prioritized task, and the task scan is
delayed.

3BSE035980-600 A

193

Error and Warning Categories

Section 1 Basic Functions and Components

Table 16. Categories of errors and warnings in Task Analysis tool

Category

Reason for Warning

Reason for Error

Cyclic load overload

The task uses more than 50% of the
total cyclic load in the controller.

Note: In a HI controller, the
recommended maximum cyclic load
is 50%.

The task uses more than 70% of
the total cyclic load in the
controller.

Total load overload

The total load in the controller is
above 70%.

Note: In a HI controller, the
recommended maximum total load
is 90%.

The total load in the controller is
above 98%.

Note: This check is relevant for
download using Load Evaluate Go
as well as for the download with
modified execution times.

First scan execution
limit

The load dependent first scan
execution time (LFST) is 90% of the
maximum FDRT+Accepted Latency,
or it is 90% of the maximum Interval
Time+Accepted Latency.

Tip: The duration of the first scan
execution time depends on the
cyclic load of the remaining tasks.
If the remaining tasks use L% CPU
load, the LFST = (FST*100)/(100-L).

The load dependent first scan
execution time (LFST) is more
than the maximum
FDRT+Accepted Latency, or it is
more than the maximum Interval
Time+Accepted Latency.

Too low FDRT

The FDRT value is below
3 seconds.

Internal diagnostics

Consecutive task execution is
detected for a time that exceeds
40% of the configured FDRT.

Consecutive task execution is
detected for a time that exceeds
50% of the configured FDRT.

194

3BSE035980-600 A

Section 1 Basic Functions and Components

Security

Security

Security on a type allows the administrator to set permissions for object-specific
restrictions like access, download, online changes, etc. This can be done by creating
a Security Definition aspect, which allows an administrator to include or exclude

user groups on an object level.

for the permission Configure (if the user has the right to configure the object, but

@ If permissions are set on type level, conflicts with general settings might occur

not a general permission to configure objects). This will result in an error
message when closing the editor after configuring an object. Use default settings
for the Configure permission, to avoid conflicts.

The permissions and their related operations are used affects the User Interface in
the following way:

Table 17. Permissions and Related Operations

Operation Permission Affects
Modify Configure Offline editing.
Change Settings (system variables) in
Control Builder.
Changes through Open IF.
Operate Operator Configure Online changes.
Interacting in CMD (interaction objects).
Deploy Download Download.
Firmware download.
Delete of application in controller.
Acknowledge |Force IO Online forcing of 10 signals.

Acknowledge HW Unit errors.

Break
Reservation

Break Reservation

Take over reservation of an Entity

SetVariable Administrate Change System Variables in the
Controller.
Enter Force SFC Online changes of SFC code.

3BSE035980-600 A

195

Authentication at Download Section 1 Basic Functions and Components

For more information, see the System 800xA Administration and Security
(3BSE037410%).

Authentication at Download

Control Builder provides authentication at download to controllers from Project
Explorer. The user will be prompted for user identification and password before
download is allowed.

Enable Authentication at Download

You must have an open control project, in order to enable authentication. To enable
authentication for download in Project Explorer:

1. Select Tools > Setup > Station > Application Download. The Setup -
Application Download dialog box is displayed.

Marme Walue Default value Description

DizableDownload falze false Digable download from this station.
ReauthenticateDL falze true The uzer has to make a new authentication at downl
SupprezsDnlineSelectionDialog false falze Alwayz download to all controllers in the project.
HwSimulationdlowed false false Hardware gimulation iz allowed, WARMING: Only allo

uzed in development systemns.

EnableT askénalyzizT ool triie true Enable the Tagk dnalyziz tool,

Figure 79. Application Download dialog box for enabling authentication at
download.

2. Write true in the ReauthenticateDL field.
3. Click OK. Authentication at download is now enabled.

196

3BSE035980-600 A

Section 1 Basic Functions and Components Confirmed Online Write

A Reauthenticate dialog box appears before download, see Figure 80.

Reauthenticate g|

User I | SEABEMMADE Y| Champion

User Mame: Champion

ek
Password: |

Reason: |D0wnload j

Approval
Comment:
{optional)

[o]4 | Cancel |

Figure 80. Reauthenticate dialog box, shown before download to a controller.

@ To disable authentication at download, simply set ReauthenticateDL to false.

Confirmed Online Write

This subsection describes the Confirmed Online Write function, which is used to
configure types and instances in a SIL application, in order for an operator to be able
modify or change values online, and force I/O channels in online mode.

The Confirmed Online Write function is used to set up permissions for writing to
SIL application properties online (from the operator workstation). It is necessary to
configure the access level for types and instances, in order to make confirmed online
write possible.

All changes to protected data will require that the person requesting an online write
has the right to make changes. A Confirm Operation dialog box will be showed each
time an online write to protected data is attempted.

For more information about Confirmed Online Write see the System 800xA
Administration and Security (3BSE037410%).

3BSE035980-600 A 197

Search and Navigation Section 1 Basic Functions and Components

Search and Navigation

The Search and Navigation function makes it possible for the user to search for
symbols (see Symbol and Definition on page 201) in a project, by using advanced
queries, for example, to find out where a certain variable is used in an application.

If a global variable and a data type in the application have the same name the
search data base will become faulty. This may results in that a symbol cannot be
found.

All symbols matching the search criteria are shown, together with definitions where
the symbols are declared. If a symbol is selected, all references where the selected
symbol is used in the project are also shown. By double-clicking on a definition, it is
possible to navigate to the editor where the symbol is declared. A double-click on a
reference shows the editor where the symbol is used.

A report that contains the last search result shown in the Search and Navigation
dialog box can also be generated (see Reports on page 212).

The Search and Navigation function is available in offline, online and test mode.
For information on search and navigation in online mode, see Search and
Navigation in Online and Test Mode on page 391.

Search and Navigation Dialog

The Search and Navigation dialog box mainly consists of Search settings, Symbol,
Definition and References. All Search settings are remembered and will be applied
next time the dialog box is used (until Control Builder is shut down).

The Search and Navigation dialog box can be accessed from Project Explorer,
context menus and editors:

* In the Project Explorer, select Edit > Search.

* Right-click a Project Explorer object (not Tasks) and select Search or
Alt+F12.

» Select Edit > Search or right-click and select Search (or Alt+F12) in a POU
editor, a connection editor, a hardware editor or an access variable editor. These
editors also have a search tool bar button g that has the same function.

198

3BSE035980-600 A

Section 1 Basic Functions and Components Search Settings

-

Search & Search and Mavigation E‘Elﬂ]
settings Search Search Cptions Search
g For: [IENHE - @ Match whole word
() Match prefix Rebuild
In: [EW - © Match substring
e Mazx no of Hits : 100
By : =[] Always On Top
Symbol Symbol Definition F{efere_noes
Qﬂﬁ — ? =% ShopDoars_FD
| ShopDoars_FD. cations. " -
Definiti / ceDoos.fD tepications.foplca @) Applications
efintion BEB Application_1
BE Diagram2

. / Code, OpenDoors.q
=4 Controllers
E_U Controller_1
N

a--- 11

Mator_2 : ShopDoors_FD.Applications. Application_1.Diagram2 Mo of Hits :1

Figure 81. The Search and Navigation dialog box

Search Settings

The Search part of the dialog box consists of the Search For: drop-down list, the
Search In: drop-down list, the Search Options radio buttons, the Max no of Hits edit
field and the Search button. Filter Result belongs to References (see Filter Result on
page 208) and the Rebuild button rebuild the Search data base (see Search Data on
page 212).

Search For:

In the Search For text field you enter the symbols to search for (see Symbol and
Definition on page 201). Search Options can be selected for the symbol text entered
in the Search For: text field. An empty text or an asterisk (*) character in the Search
For: text field search for all symbols. All symbols are case-insensitive, that is, a

LR I3

search for the texts “my”, “My”, “mY” and “MY” gives the same search results.

3BSE035980-600 A 199

Search Settings Section 1 Basic Functions and Components

Search Options

The default setting of Search Options is Match whole word. The Match substring
option searches for all symbols containing the entered text as a substring and the
Match prefix option searches for all symbols containing the entered text in the
beginning of the symbol names.

Max no of Hits:

The entered value in the Max no of Hits: field maximizes the number of symbols
that can be found at a search. The default value is 100.

Search In:

The selection in the Search In: drop-down list specifies where, in the project, you
want to search for the entered text symbol. An empty text field gives a search
through the whole project. Applications, Controllers or Libraries are selected if a
search after the Symbol is performed in all applications, all controllers or all
libraries respectively.

The text in the Search and Navigation Dialog on page 199,
Applications.Application_I1.Diagram?2 performs a search in Diagram?2 of
Application_1.

In Controllers it is only possible to search for access variables and I/O channels as
symbols, since the search symbol has to be defined (declared) under Controllers,
in Project Explorer, to match the search criteria.

Select Search “In: Applications” (not Controllers) if you want to know in which I/O
unit a certain variable is connected.

Example

In the example below, see Figure 82, a search for the variable “start” is performed to
find out which I/O channel it is connected to. “start” is connected to channel 3 in
hardware on position 0.11.1. By double-clicking on I/O channel (3), in References
pane, you navigate to the I/O unit editor there “start” is connected.

200

3BSE035980-600 A

Section 1 Basic Functions and Components

Symbol and Definition

o ST
s gl |FFR=
Fiter Resut Mazx no of Hits : 100
By : { na fitker) -] Always On Top
Symbal Definition Hefergnoes

D start ShopDoors_FD . Applications. Application_1.Diagram2 =4 ShopDoors_FD

EB Applications
: Ba Application_1
EE Diagram2
H e ﬁ Code, OpenDoors.q
E1-/4) Cortrollers
B_u Controller_1

=g 0
---g 1
= 1
Channel Name Type Variable
Qx0.11.1.1 Output 1 BoollO Application_1_Diagram2 . Motor_1
Qx0.11.1.2 Output 2 BoollO Application 1.Diagram2.Motor 2
Qx0.11.1.3 Output 3 BoollO pplication_1.Diagram?2_start

Figure 82. (Part of Search and Navigation dialog box at top) A search for “start”
variable in “Applications” to find out which I/O channel “start” is connected to.
(Part of Hardware Editor at bottom).

Search Button

A click on the Search button performs the search according to the settings. The

search result will be shown.

Always on Top

If Always on Top is checked, the Search and Navigation dialog box is placed in

front of all other Windows dialog boxes.

Symbol and Definition

The Symbol objects or the Definitions can be sorted in ascending or descending
order, by clicking on the corresponding title. A new click will toggle the sorting
order. The selected sorting order is remembered and will be used next time.

3BSE035980-600 A

201

Symbol and Definition Section 1 Basic Functions and Components

Symbal Definition

(@ ACR00MStatus ShopDoors_FD.Applications Application_1.Diagra...
(@ AppinfoStatus ShopDoors_FD Applications Application_1.Diaara...
% BdendedStatus ShopDoors_FD.Applications. Application_1.Diagra. ..
% LatchedBdendedStatus ShopDoors_FD Applications. Application_1.Diagra...
#+J Status ShopDoors_FD.Applications Application_1.Diagra...
(D status ShopDoors_FD Applications Application_1.Diaara...

Figure 83. The Symbol and Definition part of the Search and Navigation dialog.

Symbol

A symbol is an object, which can be search for in a project, by using the Search and
Navigation dialog box.

Examples of symbols are:

* hardware channels, access variables, project constants, variables, global
variables, external variables, communication variables, parameters, extensible
parameters, diagrams, programs, function blocks, function block types, control
modules, control module types, single control modules, data types, functions,
Sequential Function Chart steps, Sequential Function Chart transitions,
Sequential Function Chart sequences, applications, controllers and libraries.

Examples of objects that are not symbols:

* hardware types, tasks, task connections, comments, descriptions and language
statements in the code, labels in Instruction List code, code block names,
connected libraries.

A symbol can be selected by clicking on it, clicking on the definition of the symbol
or by using the arrow up/down keys on the keyboard.

Definition
The definition of a symbol is where the symbol is declared. The definition of a

variable is where in the project the variable is declared, for example in a program.

It is possible to navigate to the definition by double-click on it or by using the
context menu. The enter key on the keyboard can also be used. The editor where the
symbol is declared is shown with the symbol highlighted.

202

3BSE035980-600 A

Section 1 Basic Functions and Components References

Definition Context Menu
Right-click a Definition to get the context menu selections.

* Go To Definition in Editor navigates to the editor where the symbol is
declared.

* Go To Definition in Project Explorer navigates to the location of the symbol
in Project Explorer.

* Report... See Reports on page 212.

References
The References of a symbol is where in the project the symbol is used.

For example, a variable can be used/accessed by several code lines in several code
blocks, and as an actual parameter to a function call or function block call, or as a
parameter to a control module/single control module. The variable can also be used
(connected to) an I/O channel or an access variable.

|[References
-3y ShopDoors_FD
=) Applications

BEB Application_1
B@ Diagram2

. / Code, OpenDoors.q
=4 Controllers
E_J Controller_1
9... o
= 11
=

1
1

Figure 84. The References part of the Search and Navigation dialog

In the example in Figure 84, the start symbol is used at two locations:

e function block OpenDoors, in Code code block of Diagram?2.
* in channel 3 of unit 1 at position 0 in Controller_1.

3BSE035980-600 A 203

References Section 1 Basic Functions and Components

It is possible to navigate to a reference by double-clicking it, or by using the context
menu. The enter key of the keyboard can also be used. The present editor is shown
with the symbol highlighted.

In the References pane, the project name always appears as the root.
Communication Variables are the only symbols that have references in different
projects.

ﬂ If the communication variable that is being searched is present in another project,
the References pane displays this variable as part of another project only if the
other project also has been downloaded from the same workstation as the current
project.

References Context Menu
Right-click on a Reference to get the context menu selections.
* Go To Reference in Editor navigates to the editor of the selected reference.

* Go To Reference in Project Explorer navigates to the referenced object in the
Project Explorer.

* The Search menu selection gives the user a possibility to initiate new searches
from the references pane. This is useful when a variable/parameter is connected
to a parameter of a control module, single control module, function block or
diagram type.

204 3BSE035980-600 A

Section 1 Basic Functions and Components References

F B
& Search and Navigation E‘Elg
Search Search Cptions
" Search
For: AppVarl = @ Match whole word
©) Match prefix Rebuild
In: Applications Application_1 - 1
) Match substring
Filter Result Max no of Hits - 100
By { mo filter) - [Always On Top
Symbol Definition HE{EF?"DES
@ AppVart ShopDoors_FD . Applications Application_1 =- wd ShopDoors_FD
=5) Applications
BB Application_1
R S 1.5M1P1 (1)
ShopDoors_FD Applications Application_1 (1) : by reference No of Hits :1
F

Figure 85. A search for Variable “AppVarl” in Applications.

In the example in Figure 85, Appvarl is connected to a parameter SMIPI of a
Single Control Module named SM 1.

1. In References, select SM1.SMIPI(1).

2. Right-click and select Search.
The Search For: and Search In: text fields will be automatically updated
according to Figure 86. A new search is performed.

ﬂ The Execute Search Instantly check box (see Execute Search Instantly on page
209) has to be checked. If it is not checked, the user must click the Search button.

3BSE035980-600 A 205

References Section 1 Basic Functions and Components

r

4> Search and Navigation E@g
Search Search Options
" Search
For: SM1P1 = @ Match whole word
(©) Match prefix Rebuild
In: ShopDoors_FD. Applications . Application_1.5M1 - :
() Match substring
Filter Result Mazx no of Hits : 100
By (no fitter) - [] Always On Top
Symbol Definition References
& sM1PT ShopDoors_FD Applications Appication_1.5M1 || =4 ShopDoors_FD
=5) Applications
BB Application_1
SM1{ AppVarl .} (1.0)
SM
-4 52 Part (1)
ShopDoors_FD_Applications. Application_1.5M1{ 1) : by reference Mo of Hits :1

kFigure 86. A search for SMIPI in SM1.

A new search can be done to follow parameter Par/ in single control module SM?2.
3. In References, select SM2.Parl(1).

4. Right-click and select Search.

206 3BSE035980-600 A

Section 1 Basic Functions and Components References

&> Search and Navigation = | S |
Search Search Options
. Search
For- Parl - @ Match whole word
() Match prefix Rebuild
In: ShopDoors_FD. Applications . Application_1.5M1 - @ Match substring
e Mazx no of Hits : 100
By: (nofiter) - [F] Always On Top
Symbal Definition References
B Farl ShopDoors_FD Applications Application_1.5M1.5M2 -3y ShopDoors_FD
(-3 Applications
Ba Application_1
=-{@ sm

g SM2(.SM1P1.}(1.0)
=-J@ SM2

Parl : ShopDoors_FD.Applications. Application_1.5M1.5M2 Mo of Hits :1

Figure 87. A search for parameter Parl in SM1.

This example shows an easy way for the user to follow a parameter through a
control module hierarchy. The users only have to use the Search context menu to
follow the parameter downwards the control module hierarchy. It is also possible to
follow a parameter upwards a module/function block hierarchy.

Icons in References

The references are marked in blue and preceded by an icon.The icon can be any of
the following:

Icon Description

&7 | The symbol is written.
&« The symbol is read.

A3 The symbol is a function block/function block call.

& The symbol is accessed by reference.

af The symbol is a reference to a graphical connection.

3BSE035980-600 A 207

Navigation to Editors Section 1 Basic Functions and Components

Filter Result

The Filter Result option makes it possible to show references with write access only,
or to show references with read access only.

The possible selections are read, write, I/O Channel Out and I/O Channel In. I/O
Channel Out shows references to output channels only, and Channel In shows
references to input channels only.

Navigation to Editors

It is possible to navigate to the following editors and dialogs:
— The POU editor
— The Connection editor (offline only)
— The Control Module Diagram editor
— The Hardware configuration editor
— The Access Variables editor
— The Project Constant dialog (offline only)
— The Diagram editor

It is also possible to navigate to another project, if it is also displayed in the
References pane while searching communication variables.

When navigating to an editor or a dialog box, the window already can be active,
but minimized, as well as hidden behind other windows.

It is possible to navigate from a control module parameter or a single control
module parameter connection in the References to a Connection editor. However, if
the parameter connection is a graphical connection, Control Builder navigates to the
Control Module Diagram editor.

Search and Navigation Settings

The Search and Navigation settings dialog box has settings for executing the search
and editing of the search fields.

Select Tools > Setup > Station > Search and Navigation Settings to view the
Search and Navigation settings dialog box.

208

3BSE035980-600 A

Section 1 Basic Functions and Components Search and Navigation Settings

W% Search and Mavigation settings *’ﬁ

[Rebuild the Search Data when opening project

| []rebuild the Search Data when going to Online/Test Made
| Execute search instantly

[] Allow editing of the Search Fields in Online/Test Mode

I [¥]1terative searches in Online/Test Mode!

[0K][Cancel I[Help I

Figure 88. The Search and Navigation settings dialog with default settings

Rebuild the Search Data when Opening Project

When this option is checked, Control Builder will rebuild search data when a new
project is loaded in the Control Builder. This check box is, by default, unchecked.

Rebuild the Search Data when Going to Online/Test Mode

When this option is checked, search data is rebuilt when Control Builder is entering
online mode or test mode. This setting ensures that the search data is consistent in
online and test mode compared to offline mode. This check box is, by default,
unchecked.

ﬂ It is recommended to normally have this check box unchecked

Execute Search Instantly

When this option is checked, the Search and Navigation dialog box will instantly
perform a search when the dialog is accessed with the Search command, from a
menu or tool bar button, that is, the user do not have to press the Search button in
the dialog. The search is only performed if it is obvious what symbol to search for,
that is, both the Search For: and Search In: boxes in the Search and Navigation
dialog have to be filled in automatically. This check box is, by default, checked.

3BSE035980-600 A 209

Search and Navigation Settings

Section 1 Basic Functions and Components

Example:
Name Data Type Attributes Initial Value |I/O Address Access Varables
1 JACB00MStatus |HwStatus retain Controller_1.0.0
2 |BatteryLow dword retain

4 F

Variables 4 Communication Variables

A Function Blocks A Control Modules » Diagrams /

BatteryLow:=(Llalail GfEeiSits) | ErrorsAndiarnings AND 184800200007 <=0;

& Cut Ctrl+X
iz Copy Ctrl+C
« + 4Codep ST/ || <[] @ Paste Ctrl+V |
Insert r
& Search... Alt+F12
=* Edit Type Ctrl+E
ﬂl'] Edit Parameter List Ctrl+M

Figure 89. Selection of the AC800MStatus and the Search option

1. In the code block, double click the AC800MStatus variable to select it.
2. Right click and select Search, or go to the toolbar and select Edit > Search (or

Alt-F12).
r ™
& Search and Navigation l = |i[E] g
Search Search Options
_ Search
=R B 00 M Status| - @ Match whole word
() Match prefix Rebuild
In: Applications.Application_1.Diagram2 - = -
(=) Match substring
Fiter Fesul MaxnoofHits: 100
o1 (ot - ElmsonTe
Symbol Definition References
(D ACB0OMStatus ShopDoors_FD . Applications.Applica... =- Jﬂ ShopDoors_FD

E||_!__] Applications
: BB Application_1
BE Diagram2

E||_JJ__] Controllers
=) Controller_1

=N g 1]

ACB00MStatus - ShopDoors_FD Applications Application_1.Diagram2

Mo of Hits -1

Figure 90. The search result after performing above steps.

210

3BSE035980-600 A

Section 1 Basic Functions and Components Search and Navigation Settings

Allow editing of the Search Fields in Online/Test Mode

When this option is checked, it enables free editing in the Search field. It is
introduced since the strings in the search fields are very sensitive in this mode. A
single misplaced character ruins the search and the “search in” field is also case
sensitive. This check box is, by default, unchecked.

Iterative searches in Online/Test Mode

When this option is checked, the searches made in Online/Test mode are iterative,
and the search hits are presented in one pane. For details, see Search and Navigation
in Online and Test Mode on page 391.

This checkbox is, by default, checked.

3BSE035980-600 A 211

Search Data Section 1 Basic Functions and Components

Search Data

The Search data base contains search data, that is, information about all symbols,
information about the definition of each symbol and information about all
references of each symbol.

It is possible to perform a manual rebuild of the Search data base. The Search data
base can be rebuilt in the following ways:

* selecting Rebuild Search Data from the context menus of application,
controller and library.

* selecting Tools > Rebuild all Search Data

* clicking the Rebuild button in the Search and Navigation dialog

Reports

The search result can be transformed into a report by using Basic HTML Report.xslt,
that is by default installed together with Control Builder. The report contains the last
search result shown in the Search and Navigation dialog. All symbols, definitions
and references are included in the report. The symbols in the report are shown in the
same order as in the Search and Navigation dialog.

1. Right-click on a Definition and select Report....
Create Seanch and Nayigation report Pz|

Select report
| Basic HTML Repoart. xzl i |

[v Open report with registered application

|Ereate Repart | | Cloze |

Figure 91. The Create Search and Navigation report dialog.

2. Click Create Report button.
If the Open report with registered application is checked, the report will be
opened in a registered application. The Basic HTMLReport produces reports in
HTML format, that is, the report is opened in the registered Web browser.

212 3BSE035980-600 A

Section 1 Basic Functions and Components Analog Input and Output Signal Handling

3. Specify a directory to save the report in and enter a suitable file name.
4. Click Save button to store the report file on disk.

It is possible to export the report to Microsoft Excel by using Export to Microsoft
Excel in the Internet Explorer context menu.

Analog Input and Output Signal Handling

Signals start and end in I/O units with I/O channels of the ReallO data type.
Between input and output I/O units, signals are handled in I/O function blocks of the
ReallO data type, or directly in various function blocks, or in control modules of the
ControlConnection data type.

Over and under range measurement

Signal objects of real type are equipped with an option to increase the signal range
with a fixed pre-selected factor of +-15% of the specified range. You can select
individual Signal Objects connected to variables of data type ReallO on the
controller and set the input parameter EnableOverUnderRange to true. The Signal
Object enabled with over and under range feature, displays the output parameter
OverUnderRangeEnabled as true to inform the surrounding code about the extended
range.

Input objects connected to I/O

To enable signal range extensions on input signals, in Project Explorer, click
connected controller > Hardware AC 800M >Editor > Settings. Set the Clamp
Analog in values as false. See Figure 92.

3BSE035980-600 A 213

Analog Input and Output Signal Handling

Section 1 Basic Functions and Components

3 Applications

----- Il Connected Libraries
B & Control Modules
----- ﬁ S5M1 (Single control
B ----- & Diagrams
------- @ Diagrarml - (Controll
----- k& Diagram2 - (Controll
----- @ Diagram3 - (Controll
4 Controllers
= 1) Controller 1 (172.16.0.0)
Connected Applications
W Connected Libraries
A Hardware AC 800M
B Tasks
- S Access Variables
----- _I‘l, Controller_2 (10.140.199.95:2)

£
£
£

-

4, Hardware - Controller_1. AC 800M*

Editor Edit View Insert Tools Help
‘B H % e g A & Ao 108
Parameter Value Type [Unit Mii
Copy unconnected channels MNone enum
Latched hardware state Enabled enum
System alarms on hardware units Enabled enum
Simple events on hardware units Enabled enum
Filter out system alarms from hardware units |Off enum
HwStatus update cycle time 1000 dint ms 501
Clamp Analog in values alse bool
Clamp Analog out values true bool
IAC Active HW 051 string
« » 4 Settings 4 Connections _A_Unit Status / (|«]
R

b

Figure 92. Enabling over and under range for input objects.

Output objects connected to I/0

To enable signal range extensions on output signals, in Project Explorer, click
connected controller > Hardware AC 800M >Editor > Settings. Set the Clamp

214

3BSE035980-600 A

Section 1 Basic Functions and Components Analog Input and Output Signal Handling

Analog out values as false. See Figure 93.

- [@) Applications
o E'vhpplication_l i

4, Hardware - Controller_1. AC 800M*

EI & Control Modules Editor Edit View Insert Tools Window Help

..... {8 sML (Single control module) BRH E S] o KA S IE] A e T

EI ----- i Diagrams

Diagraml - (Controller_2.Fast) Parameter Value Type |Unit
,,,,, ## Diagram2 - (Controller_2.Norr Copy unconnected channels MNone enum
----- ## Diagram3 - (Centroller_2.5low Latched hardware state Enabled enum
4, Controllers System alarms on hardware units Enabled enum
B ,,,,, -;{J, Contreller_1 (172.16.0.0) Simple events on hardware units Enabled enum

@ Connected Applications Filter out system alarms from hardware units |Off enum
I Connected Libraries HwStatus update cycle time 1000 dint ms
4 Hardware AC800M Clamp Analog in values true bool
B Tasks Clamp Analog out values alse bool

e T Access Variables IAC Active HW 0.51 |string
----- 1L Controller_2 (10.140.199.95:2)

« » % Seftings 4 Connections A_Unit Status / <&

Figure 93. Enabling over and under range for output objects

3BSE035980-600 A 215

Backup Media

Section 1 Basic Functions and Components

Backup Media

Backup Media and portable memory cards can be used for several different
functions in an AC 800M controller such as transferring data between a Control
Builder PC and a controller (that is Controller Firmware or Configuration) and/or
for storing data locally in the controller (that is Post Mortem Memory Image or Cold
Retain Values). Data stored on the Backup Media does not depend on the
controller's battery backup. The Backup Media card can be inserted in a media card
reader/writer connected to a Control Builder PC or in the card slot located at the
front of an AC 800M controller.

Table 18. Supported Function

Supported Function AC 800M | AC 800M HI
Dump of Post Mortem Memory Image Yes Yes
Upgrading Controller Firmware Yes No
Saving Cold Retain Values Yes (1) No
Loading Configuration Yes No
Storing related Files Yes No

(1) Saving Cold Retain values to Backup Media in the controller is not supported for

redundant AC 800M controllers.

The functions listed above may all be used together on the same card in a specific
controller except for the AC 800M HI controller. However it is not recommended
due to the risk of unintentionally activate functions, for example, firmware
upgrades, while restarting a controller.

The AC 800M HI controller only supports usage of Backup Media for post
mortem memory dump. No files related to other functions may exist on Backup
Media used in the AC 800M High Integrity controller.

216

3BSE035980-600 A

Section 1 Basic Functions and Components Card Types

Card Types
The supported backup media for AC 800M controllers are:
* Compact Flash card (supported in all AC 800M controllers except PM891)
* Secure Digital card (supported only in PM891)
For more information about the AC 800M controller, see the subsection ‘Product
@ Overview’ in the AC 800M Controller Hardware (3BSE036351*).

Compact Flash

Compact Flash (CF) is a portable memory card that can be easily inserted to the card
slot located at the front of AC 800M controllers (except PM891).

Specifications for Compact Flash Card. The following are the specifications for
the CF card used in AC 800M controllers (PM8xx, except PM8&91):

* Formatted according to FAT16 or FAT32.
e Minimum read speed — 8MB/second.
* Minimum write speed — 6MB/second.

* Same (or better) ambient temperature operative range compared to the PM8xx
that uses the card.

ﬂ FAT16 is sometimes referred to as just FAT

ﬂ FAT16 formatting must be used when upgrading controller firmware with a
compact flash card. Any size card may be used but cards larger than 2 GB needs
to be re-partitioned to less than 2 GB in order to be formatted as FAT16. This will
be done automatically if the function Load Firmware to removable media in
control builder is used to copy the firmware to the card.

3BSE035980-600 A 217

Adding CF Card or SD Card to Hardware Section 1 Basic Functions and Components

Secure Digital

Secure Digital (SDSC/SDHC/SDXC) is a portable memory card that can be easily
inserted to the card slot located at the front of the PM&891 controller.

ﬂ Card type SDSC is sometimes referred to as SD.

Specifications for Secure Digital Card

The specifications for the SDSC/SDHC/SDXC card used in AC 800M controller
(PM891):

* Formatted according to FAT32.
* Minimum read speed — 8MB/second.
* Minimum write speed — 6MB/second.

* Same (or better) ambient temperature operative range compared to the PM891
that uses the card.

ﬂ Cards formatted according to exFAT is not supported.

Adding CF Card or SD Card to Hardware

When a Backup Media card is used in a controller, it is recommended to always
configure this in the controller hardware tree, though it is only required by the
function Saving Cold Retain Values. The benefit is that system events will be
generated when a card is inserted or removed.

Ensure that BasicHwLib is inserted under Hardware and that it is connected to the
controller.

From the Project Explorer:

1. Expand the Controllers item until you reach the CF Reader (or SD Reader)
item (see Figure 94).

2. Right-click the CF Reader (or SD Reader) and select Insert Unit from the
context menu. A dialog opens.

3. Select CF Card (or SD Card) in the dialog, and click Insert.

218 3BSE035980-600 A

Section 1 Basic Functions and Components Dump of Post Mortem Memory Image

4. Click Close.

=) Controllers
B 0, Controller 1 (172.16.0.0)
----- 3 Connected Applications
..... i Connected Libraries
B 4 Hardware AC800M
C B 0 PM864/TPE30
D = 0 CFReader
-
-] Ethernet
- 2 Ethernet

Figure 94. The Controllers item expanded and the CF Card connected to the CF
Reader item.

Dump of Post Mortem Memory Image

In most cases of a controller shutdown or crash, the content of the whole RAM
memory will be captured and automatically saved on the Backup Media if present.
This is valid both for a single/primary PM or a backup PM. This information will, in
many cases, greatly increase the probability of finding the root cause of a problem
and is added to the error report. See Error Reports on page 493.

This function is supported in all AC 800M controller types including the
AC 800M High Integrity controller.

It is recommended to insert a Backup Media card in case of controller crashes, in
order to collect vital information. It is possible to insert the Backup Media card
after the crash has occurred. This requires that the Autorestart function (default
setting is off) has not been enabled via the IPConfig tool.

The dump file created will always be named DUMP.bin. Hence only one dump
file can exist on the Backup Media. Any existing dump file will be overwritten.

It is not recommended to store firmware files on the Backup Media that is used to
capture memory dumps. This is in order to avoid initiating a firmware
upgrade/installation when restarting a controller.

It is recommended to compress the DUMP.bin file in order to save space before
sending it to the support organization.

Ensure that the complete memory dump is saved before the Backup Media card is
removed. The status is indicated by the F(ault) LED on the PM8xx, see Figure 95.

3BSE035980-600 A 219

Dump of Post Mortem Memory Image Section 1 Basic Functions and Components

Controller
Shutdown/
Crash

Dump
Memory to
Bar:kup Media PM LED Indications

® Flault)
ON
Y
= Autorestart?
Ne
@
Flashing fast
Hz)
Backup Medi
inserted?
Dump
® Flaur) Memory to
on Backup Media
& Flau)
Flashing slow
(0.5Hz)
Init Button
pressed?
Yes

Figure 95. Dump of Memory Image

220 3BSE035980-600 A

Section 1 Basic Functions and Components Dump of Post Mortem Memory Image

F(ault) LED is ON - Dump of memory image in progress. The time needed for
the memory dump varies with card type/speed and controller type (memory
size).

ﬂ A memory dump in a PM891 will take more than 20 minutes. If the controller is
manually restarted before the dump is ready the dump file will be incomplete.

F(ault) LED is Flashing Fast (10 Hz) - Indicating that the controller is waiting
for a Backup Media to be inserted after a controller shutdown/crash. If the
reason for the shutdown is already known or no Backup Media card is available
the controller can be restarted by pressing the INIT button.

F(ault) LED is Flashing Slow (0.5Hz) - Dump of memory image is ready. After
this the Backup Media card can be safely removed from the controller. The
Backup Media card will then contain a file (DUMP.bin) with the total memory
content of the controller and in some cases also other log files. The controller
can be restarted by pressing the INIT button.

3BSE035980-600 A

221

Saving Cold Retain Values on Files Section 1 Basic Functions and Components

Saving Cold Retain Values on Files

The cold retain values used by the backup media can either be saved cyclically via
the settings in the hardware editor, or from the code via the function block
(SaveColdRetain).

Either way, these values are only saved on files located on the backup media. Thus,
not be confused with the cold retain values saved by Control Builder or OPC Server
during a download.

Read more about the SaveColdRetain function block type in Control Builder
online help.

An OPC Server will not be able to give any data if the AC 800M starts to execute a
different version found at the backup media after the power is resumed. All OPC
quality in this case will be BAD, because the OPC Server has no way of finding the
correct description files. But, if the backup media has the last created version, then
the AC 800M continues to execute the last version, and the OPC server can generate
data.

Also note that cold retain values will not be saved on the backup media in case there
is an application version mismatch.

Setting Up Cyclic Save of Cold Retain Values

As mentioned earlier, saving cold retain values cyclic are one of two methods for a
single CPU configuration. The other method is saving cold retain values based on
process events, accomplished by calling the function block (SaveColdRetain) from
the code. You should typically decide one of these two methods. However, if you
run with a redundant CPU configuration, then you must read Cold Retain Values for
Redundant CPU Configuration on page 223.

This subsection will describe how to save cold retain values cyclic. Provided that
you have added the CF Card (or SD Card) to your Hardware tree, do the following:

1. Double-click the CF Card (or SD Card) and select Settings tab in the
hardware editor.

2. Set the cyclic interval time for saving cold retain values to file. The default
value is (60 min.). See Figure 96.

222

3BSE035980-600 A

Section 1 Basic Functions and Components Saving Cold Retain Values on Files

Farameter “alue Type Linit hin Max =]
Save cold retain values =] dint rrin 0 B5535
<[v [Settings 4 Connections & Unil Status 7 IE | >|

[Row 1, Col 2 | |scRL 2

Figure 96. Settings for Save cold retain values (default 60 min.).

3.

To prevent CF card or SD card from saving additional cold retain values, you
must set the parameter Value to zero (0). Otherwise it will keep saving new
values to file. Setting the value to O would normally be the case before shipping
the backup media to a host control system.

Close the hardware editor.

Cold Retain Values for Redundant CPU Configuration

If you have a redundant CPU configuration; you cannot save cold retain values
cyclic or by the function block.

However, you can always save cold retain values via the Tool menu in Control
Builder so that your cold retain values will be part of the application, thus be loaded
to the backup media.

To save cold retain values for a redundant CPU configuration in Control Builder,
first make sure your project is Online:

1.

In the Project Explorer menu bar select Tools > Save “ColdRetain” Values. A
‘Save “ColdRetain” Values’ dialog will open.

Click Save. The cold retain values are saved with your application and you are
now ready to download to the CF card or SD card. These values will be
included when you download the next time to the CF or SD card.

If an AC 800M contains redundant communication interfaces on the CEX-bus,
then perform a download to the controller before creating the Compact Flash
image. Make sure that the project is not closed while creating the image and
before it goes offline, else the image is not completed.

3BSE035980-600 A 223

Downloading the Application to Removable Media Section 1 Basic Functions and Components

Downloading the Application to Removable Media

Before you can download your application to the backup media, you must connect
an external Compact Flash Writer or Secure Digital Writer to your Control Builder
PC. The writer is normally connected to the PCs USB port.

ﬂ It is not possible to download to removable media if the Difference Report is
enabled for the project. To check the Difference Report setting, right click the
project name, and select Settings > Difference Report.

From the Project Explorer, make sure your project is in offline mode and that the

Difference Report is not enabled. Then, do the following:

1. Insert a Compact Flash card or a Secure Digital card in the Writer slot.

2. Right-click controller and select Download to Removable Media from the
context-menu. A Backup Media dialog window will open.

3. Select Writer and click OK. The Control Builder will write the application to
the backup media.

In case the Control Builder source code files is to be placed on the CF/SD card, it
@ is recommended to zip these files into one single file before placing it on the card.

For a redundant CPU configuration, you need to write the same application twice

@ (two CF/SD cards, one in each CPU). Copy (in Windows Explorer) the
downloaded application (two folders) from the CF/SD card and paste them
temporarily on your local disk. Insert the next memory card into the Writer and
drag your two folders from the hard disk and drop them on the new CF memory
card.

Configuration Load

A controller will load the configuration (Application and Controller Configuration)
and cold retain values from backup media during the following circumstances:

* During controller power-up if it is detected that the content of the memory is
corrupted or the battery status is bad.

* During a controller reset.

See flow chart Controller Restart Modes and Backup Media Usage on page 231 for
details.

224 3BSE035980-600 A

Section 1 Basic Functions and Components Upgrading Controller Firmware using Backup Media

Loading the configuration from Backup Media is not supported for AC 800M
High Integrity Controllers.

For redundant AC 800M controllers it is recommended to insert a Backup Media
card in both processor modules. Both cards must contain the same configuration
version.

Loading the configuration from Backup Media is not supported when using
distributed applications.

This function is not intended to be used in a DCS system. A typical installation
were this function is used is a stand-alone controller, often a remote installation,
without battery backup.

An AC 800M configured as time master (CNCP order number 1) does not
transmit any clock synchronization messages if it starts from a backup media
image, and the time quality in the AC 800M is bad due to a discharged battery.
The time in the AC 800M has to be manually set using the function block SetDT
in order to have the clock synchronization in place.

© DR B3

Application Version Check

If the application version in the controller is not identical with the version in the
backup media or vice verse; a warning message will alert and no more cold retain
values can be saved.

Upgrading Controller Firmware using Backup Media

A controller may be upgraded with new firmware from the Backup Media during a
manually initiated Controller Reset (a long press on the INIT button). If a card is
present, then the controller checks for a valid firmware in it. If a valid firmware is
found, it will be used for upgrading the current firmware. See flow chart Controller
Restart Modes and Backup Media Usage on page 231 for details.

ﬂ Firmware upgrade is not supported for AC 800M High Integrity controllers.

3BSE035980-600 A 225

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

H
H
H
A\

For PM85x-PM86x controllers only FAT16 formatted CompactFlash cards are
supported. Due to this the maximum partition size is 2 GB. Larger CompactFlash
cards will need to be re-partitioned. This restriction does not apply for the
PMB891. This will be done automatically if the function Load Firmware to
Removable Media in Control Builder is used to copy the firmware to the card.

Its only the PM firmware that may be loaded from a Backup Media card; hence
firmware for CI modules (e.g. CI854) must be downloaded from the Control
Builder.

A firmware upgrade is never done automatically during a normal start-up, a long
press on the Init-button is required as stated above.

The Control Builder function Load Firmware to Removable Media will prepare
the card if needed and copy necessary files to the card.

The firmware upgrade function in PM85x-PM86x controllers uses a low level
function to locate a special “boot” file on the CompactFlash card which does not
depend on the normal file system. Hence it may find this file even if it has been
deleted unless a thorough reformatting has been done. See chapter Remove Files
Completely from a CompactFlash Card on page 233 for further details.

Upgrading a controller’s firmware using a removable backup media, involves the
following steps:

1.

Loading a copy of the firmware (that is, a firmware image) onto the backup
media using Control Builder (refer Loading the Firmware Image to Removable
Media on page 226).

Upgrading the controller firmware using the image on the backup media (refer
Upgrading Controller Firmware from a CF/SD card on page 230).

Loading the Firmware Image to Removable Media

Follow the steps given below for loading a firmware image from the Control Builder
to a removable backup media:

1.

2.

Mount the backup media card (SD or CF card) on the card reader-writer of the
Control Builder PC. Make sure that no other program uses or accesses the card.

Right-click on the controller object of the same type as the controller to be
upgraded.

226

3BSE035980-600 A

Section 1 Basic Functions and Components Upgrading Controller Firmware using Backup Media

3. From the context-menu, select Load Firmware to Removable Media. The
Load Firmware to Removable Media window appears.

4. The Load Firmware to Removable Media window displays details of the card
being used and the action that will be taken. The displayed details differ
depending on whether the media card is SD or CF. Click Yes to proceed or No
to cancel the operation.

Load Firrmware to Remaovable Media [}
| 1

This cperation will dewnlead firmware for a PMEG65 PAS TPE3D to a remowvable
media of type Compact Flash (CF).

Mote: The firmware will net be compatible with any other contraller type!
Mote: The media will be formatted to FATLS. The operation will also limit the
media to a maxamum size of 2GE, i.e. a larger media will be reduced to 2GB.

The ariginal size can be recovered using an extemal tool like e.g. DiskPant

Please be aware that all existing information on the miedia will be erased during
the operation.

Do you want to continue?

| Yes [}I | Na

Figure 97. Card details for PM865 PA/TP830

Load Firrmware to Removable Media

ik

This operation will dewnload firmware for a PMESL to a removable media of type
Secure Dugital (SD).

MNote: The firmware will not be compatible with any other controller type!

Do you want to continue?

ves [Mo |

Figure 98. Card details for PM891

3BSE035980-600 A 227

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

5. On clicking Yes, a list of identified removable media appears. If the card is not
present in the list of removable media, then try the following:

— Unmount and then remount the media again.

— Make sure that the card is formatted in a file system. If not, use the
Windows format tool or Diskpart to format it in FAT or FAT32 file system.

6. Click the required removable media to select it, and then click Yes to proceed.
Either of the following cases will happen:

— If the media used is CF, the Diskpart tool then formats the CF card to
FAT 16 with a maximum size of 2 GB (even if the size of the card is
greater). The progress of the Diskpart tool will be displayed in a command
prompt window. Upon completion the window closes automatically and
the firmware image is copied to the card

— If the media is an SD card, then no formatting is required at this point. The
firmware image is copied to the card.

If the above operations are a success, then:

* There will be four files on the card (see Figure 99 for CF card and Figure 100
for SD card). If the media card is CF, then it has been formatted as FAT.

e The file content.txt has been rewritten and the first row describes the selected
controller. Other rows remain either untouched or partly rewritten.

228 3BSE035980-600 A

Section 1 Basic Functions and Components

Upgrading Controller Firmware using Backup Media

-_« ACBIOM (E)

File Edit

)| Unknown (4)

Boothsl.exe

View Tools Help

HName Date modified Type

efup8BD.bin

content.bd

PWaE1-dafecdll...

Figure 99. Firmware image files on CF card

chup8Sbin

content.bxd

FWaEs1 -dafcbade...

Figure 100. Firmware image files on SD card

3BSE035980-600 A

229

Upgrading Controller Firmware using Backup Media Section 1 Basic Functions and Components

If the operation is a failure, a message is displayed conveying the same. Further
information about the failure can be found in the Control Builder session log.

While Diskpart is formatting the CF card, it is possible that Windows may

ﬂ discover the card as an unformatted disk. In such a case, the following dialogue
will be displayed. Here, select Cancel. If not, there will be two program instances
trying to format the card at the same time.

+-] Microscft Windows E

You need to format the disk in drive E: before |
you £an use it

Do you want to format it? |
.|

| Concel 1|

Figure 101. Windows dialog for formatting unformatted disks

Upgrading Controller Firmware from a CF/SD card
1. Insert the CF card or SD card in the card reader slot of the CPU and Power-On.

2. Perform a Controller Reset, by pressing and holding the INIT button till the
green Run LED starts flashing.

3. Release the INIT button to start the loading firmware. The process to load the
Firmware starts, and the F(ault) and the B(attery) LEDs indicate the progress.

At the end of the operation, the hardware reset starts the newly programmed system.

230 3BSE035980-600 A

Section 1 Basic Functions and Components Controller Restart Modes and Backup Media Usage

Controller Restart Modes and Backup Media Usage

Controller
Restart

Long Init
pressed?

-

y

Controller
Reset
[
Memory and No
Battery OK?
Yes Controller
Reset
y
- " No Backl\l“[.am Media No
Coniroller OK? Confgurason?

Load
Configuration

Load Cold Yes Cod Retain
wvalues on Backup

Retainvalues Media?

Short Init Yes No
pressed?
No

Figure 102. Controller Restart Modes and Backup Media Usage

3BSE035980-600 A 231

Storing Related Files Section 1 Basic Functions and Components

Storing Related Files

It is possible to store related files on the Backup Media.

Storing related files on Backup Media is not supported for AC 800M High
Integrity Controllers.

Restoring Formatted CF Cards to Original Size

v

In some cases the CF card used for copying the firmware from Control Builder, may
have a size of more than 2GB. During copying of the firmware, Diskpart will format
this card to FAT 16, and the size will be limited to 2GB. In such a case, to restore the
card to its full original size, follow the steps given below:

1. Start the Diskpart tool by selecting Run and then type diskpart.exe. The
Diskpart tool opens in the command prompt. You can then proceed with the
commands written in bold in the following steps.

2. List all volumes to identify the actual media by using the list volume
command.

3. Select the volume by its number or drive letter n by using the command
select volume 7.

Clean the selected volume using the command clean.

Create a partition using create partition primary command.

4

5

6. List all partitions to identify the partition by using list partition command.

7. Select the partition by its number n by using the command select partition 7.
8. Activate the partition using the active command.

9. Proceed to format the card with default settings using the format command.

10. When the format is complete, exit.

You may try the above steps in also cases where the card is shown as unformatted
and/or unreadable.

232

3BSE035980-600 A

Section 1 Basic Functions and Components Remove Files Completely from a CompactFlash Card

Remove Files Completely from a CompactFlash Card

To completely delete all the files from a CompactFlash card, that is been used to
upgrade firmware, in order not to accidentally initiate a new upgrade of a
PM85x-PM86x controller use the following steps.

* Insert the CompactFlash card in a card reader/writer connected to a PC.

* Right click the drive in the Windows Explorer window and Select “Format...”
and ensure that “Quick Format” is not selected under Format options.

Compiler Switches

Compiler Switches are used to control the behavior of the compiler by setting
additionally language restrictions.

Global restrictions are valid for all code. Restrictions can be set to generate errors or
warnings at compilation. For SIL applications it is also possible to set additionally
compiler restrictions. At compilation, errors and warnings are generated according
to these settings and global restrictions. These restrictions can be used to stop the
use of complex constructions in code, which might cause instabilities or errors.

Global restrictions and SIL restrictions are combined as follows:
* A global error and a SIL warning always generate an error

* A global warning and a SIL error generate a warning for non-SIL applications
and an error for SIL applications.

It is possible to exclude a library from checking with user-defined compiler
switches. Only warnings can be excluded for a library, not errors.

If a library is excluded from a certain restriction, this restriction will not be
@ checked for any type belonging to that library.

If restrictions are changed, a re-compilation is required before the next download.

Restrictions are checked both at compilation and when checking the code.

Settings

Right-click the control project (root object) and select
Settings > Compiler Switches to open the Compiler Switches dialog.

3BSE035980-600 A 233

Settings Section 1 Basic Functions and Components

¥E Compiler switches EI

il x -~
Ssi:llt::neus Execution in SFC fl:i:ﬂ Esllr:‘ > Esr:f
hz:l_t]:_r;rllFsoTc CASE iﬁﬁg Allowed Allowed
:mlrﬂ:tg;s:.ist language iﬁxg s g
Ladder Diagram language Allowed
Looos in Control Modules Emor Eror Ermor M
Current compiler switch to edit below: Simultaneus E zecution in SFC

Glabal SIL1-2 SIL3

Alloveed v

Figure 103. Compiler Switches dialog

The possible settings of compiler switches are described in Table 19.

Table 19. Compiler Switches

. - Global
Switch Description (Non-SIL) SIL1-2 [SIL3

Simultaneous Execution in | Simultaneous sequences in A E&M |[E&M

SFct) SFC

Loops In ST Loops in Structured Text (FOR, A E&M |[E&M
WHILE, REPEAT and EXIT)

Nested IF or CASE Nested IF and CASE A A A
statements in Structured Text

Implicit Cast® Automatic conversion of data A E E
types (e.g. integer to real)

Instruction List language Instruction List A E&M |[E&M

Ladder Diagram language |Ladder Diagram A E&M |[E&M

Loops in Control Modules(!) | Code sorting loops E E E

SFC Language Sequential Function Chart A A E&M
Language

234 3BSE035980-600 A

Section 1 Basic Functions and Components

Settings

Table 19. Compiler Switches (Continued)

Switch

Description

Global
(Non-SIL)

SIL 1-2

SIL 3

Force 1/0O from code

The compiler switch for forcing
I/0 signals from 1131 code. It
restricts changes of the Forced
component in variables of one
of the data types BoollO,
ReallO, DintlO and DwordIO
and results in either warning or
error when the switch is
activated.

Example: MyBoollOVar.Forced
:= true; Not allowed since this
assignment directly affects the
“Forced” component.

A

E&M

E&M

Multiple calls to the same
Function Block

This switch defines if the
compiler should check if a POU
Type contains more than one
call to a specific Function Block
instance

None or multiple calls to
ExecuteControlModules

The ExecuteControlModules
function is called once in every
scan from a Function Block
Type that contains
ControlModule instances. This
switch decides if the compiler
checks that the call is made
correctly.

Non-SIL communication
variables in SIL1-3
applications

Restricts the possibility to use
Non-SIL classified
communication variables in a
SIL1-3 classified application.

n/a

3BSE035980-600 A

235

Settings Section 1 Basic Functions and Components

Table 19. Compiler Switches (Continued)

. o Global
Switch Description (Non-SIL) SIL1-2 | SIL 3
SIL 1-2 communication Restricts the possibility to use n/a n/a E
variables in SIL3 SIL1-2 classified
applications communication variables in a
SIL3 classified application.
No forward flow between Verification of forward flow in W E E
blocks in FD Function Diagram
Max four lower SIL Check that max four A AEW | AEW
communication variables communication variables with
lower expected SIL is used

(1) This switch does not affect the “sequence selection” functionality of SFC.
(2) In SIL applications it is recommended to set this switch to Error.

Notes to Table 19

“A”: - Allowed, Gives no error or warning

“W”: - Gives a compiler Warning if the rule is violated, acknowledge required
before download is allowed.

“E”: - Gives an compiler Error if the rule is violated, download is blocked.

The default settings are marked with boldface letters in the table.

“E & M” - Error and mandatory, same as "Error" but can not be changed by the
user.

ﬂ See Control Builder online help for more specific information how to configure
compiler switches.

236 3BSE035980-600 A

Section 1 Basic Functions and Components Reports

Reports

Difference Report

If the Difference Report function is enabled, the Difference Report Before
Download dialog displays (in the same dialog):

* Differences
* Source Code Report
* Compilation Messages

Based on the information presented in the reports, you can either accept or reject the
changes, to continue with the download or cancel the download.

To enable/disable the function, right-click the control project folder (root object)
and select Settings > Difference Report. This setting is only available for
non-High Integrity controllers, whereas the Difference Report appears
automatically while downloading to High Integrity controllers.

The Difference Report and start value analysis functions is always enabled when
downloading SIL applications to High Integrity controllers.

Difference report shows the difference between data downloaded to the controller
and the data present in Control Builder, see Figure 104. The tree view to the left
shows the parts of the application that have changed. By clicking an item in the tree,
you can display the present controller code to the left, and the new code to the right.
Differences are also indicated by colors (the color coding is explained on the status
bar at the bottom of the report window).

3BSE035980-600 A 237

Difference Report

Section 1 Basic Functions and Components

Fiepon Before Downtosd
Fle Edt Mew Took Hep
(v 7| P BB TIE

E

; Changed Types-terma
= @ DF_SaftCon_fopi
Inatanoe Snschoe

] St Vales
2] 30 Man Seuce Lits
I DR _ScfCon_Acpd. New Apchcation: Mot Anafrsed
:= DA_SoftCon_Conl
Luri o) Commmmrecaonn 'Varshies
g Dewricaded Cortleny
T18) DR_SoACon_Conl (1046151500
5Ll Source Code Repodt
1, Prepeet constants

B
B

=My o crura
=My s w
O v wouus

E-|_| i Downioaded Contmbers
1) DR _SohCon Cenl (10451381503
Changed Lines. Irseried lires. Cieletes Lires,

Warsior w controller

‘arsion in Cordeol Builder

b

Fl

<DF_Type names="TR_SoftCon_Appl~ Mrsny="DR_SoftC
<DR_Apphcalson Name= |

LLewel="H

<RzseHodTyps InternalChangeTime="2012-01-37-11:15
¢ Ghobal/arisbless

=Glabalianabls Marme="GlobVarMoRetain® Tyse="din

=Globalianable Harme ="GlobVarBoRetainPPA" Typa='

=Globalyanable Hame="GlobVarRetain® Type="dint" i

<Globalvanable Hame="GlobVarColdRetain® Type="d|

< GRS Brisbies =

anables s
wianatls Hame="VarNofletain™ Type="dint” Accesile
=\ anakls Hamo="Varfatain® Typo="dint" Acceslaval
=y anatls Hame="VarColdRetain” Types"dint” Accers

= arsbless
< ControlModules»>
cSmgleControlModule Names"SCHApDPL® TypeGude“cl

< fCartralModules>
«/RootModType >

23 <fOR_Type>

1 «=DR_Type name="DR_SoMCon_Appl° library="DR_5i
@ «=DR_Apphcation Hame=" b

Shllave
«“RootMadType InternalChangeTime="2012-01-27-17
wGlobah/anabless
=Glcbalfarinbln Nama="GlobVarNoRatain™ Typa=
=Glzbalvariable Name="GlobVarNoRetlsinPPA" Ty
=Glbelvanisble Nome="Glob¥arRetsin® Type="di
<Globalvaniable Nome="GlobYarColdRetain® Type
<Glohalvariabie Names"dintGhobVar” Types"dint"
</ GlobsNVanables s
Luanabled
<Vanable Name="VarMoRelain™ Type="dinl" Acce
«Variable Name="VarRetain® Tyce="dint" Accoesl
=yarisble Name="VarColdRetain™ Types="dint™ i
«\ariable Name="dintAppVar” Types="dint™ fcces
<fVanabless
< ConbroiModubes >
<SingleContraiMadule Hame="SCHApP1” TypeGuid
aSingleContraiMadule Kames"SCML" TypeGuda21
wCanrelMedule Name="CHInstl" Type="CMTypei
< ControlMcduled >
</RootMedType>

13 </OR_Type=

Left i‘W_WJﬂ!IOﬂ Manae="DB3_fofulon_Appl® 3Illevel="HonSIL® Taskloanection="H:orsal® Symuanersiss==3.1° Pred

Fl-ig‘t]cw_lml.nue-n Wasas"D8_Zafrle
.

]

f_Appl® SIllevel="HondIl® Tesklonnections"Rermal® BymuanVersles="3.1% Pood

Figure 104. Difference Report Before Download

Review of Mandatory Items Before Downloading to HI Controllers

In the Difference Report, there are mandatory items that should be reviewed and
acknowledged before downloading to a HI controller. If there are unchecked
mandatory items when you accept the report, a warning dialog appears. This dialog
also displays the list of mandatory items that are not reviewed (unchecked items
during the review).

238

3BSE035980-600 A

Section 1 Basic Functions and Components Difference Report

a5 Review of Mandatory Items Before Download cujiEl

The Difference Report contains 33 items that are mandatory to review and acknowledge before a
dowmload to a Hl contreller. You have currently reviewed 0 of these items.
There are currently 33 items that remain to be reviewed. These items are listed below.

A ltis possible to postpone the review to the next download by checking the checkbax below.
NOTE 1: All items in an application or controller must be reviewed and acknowledged in order to

regard this unit as fully reviewed. A complete review for next download of the unit is required if not fully
reviewed during this download.

NOTE 2: Itis only allowed to postpone the reviews of mandatory items before a download to HI
controllers during the engineering of the project.

Path
" Differences’\DR_ACE00MHI_App 2\Communication Variables with Lower SIL
B Differences\DR_ACBOOMHI_App 3\ Communication Variables with Lower SIL
1) Dfferences \Linked Communication Varisbles\Downloaded Controllers\DR_ACB00MHI_Con (172.16.85.14)
(G Source Code Report\Project constarts
‘j Source Code Report'\System vaniable ‘Enable Sting Transfer’
(i) Source Code Report\Main Source Unit for Project
W, Source Coda Repod\DR_ACS00MHI_fpp2\Connected Libranes
2 Source Code Repod\DR_ACB00MHI_App2\Types and Single Instances\DR _ACB00MHI_App2 -

4 m 3

| »

™ Postpone review to the next download. This is only allowed during engineering. | Cancel !

Figure 105. Example of Review of Mandatory Items Before Download dialog

In this dialog, it is possible to postpone this review to the next download if the
download occurs during engineering or testing. Click the check box Postpone
review to the next download, if required.

But, it is not allowed to postpone this review before downloading to a High Integrity
controller in a production site. Refer to System 800xA Safety AC 800M High
Integrity Safety Manual (3BNP004865%).

It is also possible to enable/disable the postponing of review of mandatory items for
SIL applications. To enable/disable the function:

1. Right-click the control project folder (root object), and select Settings >
Difference Report.

2. In the Difference Report Settings dialog, use the Allow postponing of
mandatory items check box, to enable/disable the postponing of review of
mandatory items (see Figure 106).

3BSE035980-600 A 239

Difference Report Section 1 Basic Functions and Components

Configuration

& Difference Report Settings @

Difference Report with start walue analyziz will always be shovn for SIL
applications downloaded to HI contrallers reqardless of the settings made in
thiz dialog.

Postponing of mandatory items iz anly valid for SIL applications and HI
controllers.

Enable Difference Report
Enable start value analysiz
Allows poztponing of mandatory items

I 0K H Cancel J I Help I

b

Figure 106. Difference Report Settings dialog

The Difference Report, shown during the download sequence is configurable on the
project level.

Difference Report has three configuration options:

1. Enable Difference Report:

If Difference Report is disabled, only HI-controllers and its applications will be
analyzed by Difference Report. The disabled controllers/applications will be
marked as disabled in the Difference Report User Interface. If Difference
Report is disabled the Source Code Report for Controller will be disabled as
well when a new download have been done.

2. Enable start values analysis:

If disabled, the start values analysis will be disabled during Difference Report
but the rest of the report will be presented to the user. The start value analysis is
always enabled for applications executing in HI-controllers. The disabled start
values are marked in the User Interface.

ﬂ Only available if Difference Report is enabled.

3. Allow postponing of mandatory settings:

240 3BSE035980-600 A

Section 1 Basic Functions and Components Difference Report

If set, the postpone checkbox in the “Review of Mandatory Items” dialog will
be enabled, making it possible to postpone the review of mandatory items (see
Review of Mandatory Items Before Downloading to HI Controllers on page
238 for more information).

ﬂ Only available in Control Builder and if Difference Report is enabled.

The Difference Report is mandatory for HI-controllers and all applications
executing in the HI-controllers.

The Difference Report is also shown during transfer to Test Mode. If
Difference Report is disabled, no Difference Report is shown, even for
HI-controllers. Both Difference Report and Start Value analysis is by default
enabled when a new HI-project is created and disabled when a Non-SIL project
is created. Postponing of mandatory items is allowed by default.

The configuration option does not affect Source Code Report when generated
in offline mode from the Tools menu. This feature is always available.

3BSE035980-600 A

241

Difference Report

Section 1 Basic Functions and Components

The Difference Report presents the differences found, under the Differences item in

the tree view.

Table 20. Categories under ‘Differences’ item

Mandatory to
Category Displays Differences for... Check in SIL or
Not......
ApplicationName | Project Constants All items are
e Connected Libraries mandatory, except
e Changed Types/ltems Start Values
e Instance Structure
e Execution Order
e Start Values
e Main Source Units
e Communication Variables with
Lower SIL
— Communication variables in the
application, with the Expected SIL
property set to a value lower than
the SIL of the application
ControllerName e Connected Applications All items are
e Connected Libraries mandatory

Hardware Types
Hardware

Tasks

Access Variables
Main Source Units

Foundation Fieldbus

— If an external configuration tool
like Fieldbus Builder FF is used,
the changed settings are
displayed

242

3BSE035980-600 A

Section 1 Basic Functions and Components Difference Report

Table 20. Categories under ‘Differences’ item (Continued)

Mandatory to
Category Displays Differences for... Check in SIL or
Not......
Linked o Downloaded Controllers — All items are
Communication Communication variables in mandatory
Variables downloaded controllers
. Resolved Controllers —

Controllers where communication

variables will be resolved as a

result of the download
System variable Changed System Variable Mandatory
VariableName

ﬂ To reduce the compilation time during download of a project to a controller, it is
possible to exclude the start values from the difference report. The start value
analysis is enabled/disabled via Project > Settings > Difference Report.

The start value analysis cannot be disabled for a High Integrity controller.

History of Difference Report

The accepted Difference Reports could be accessed again after a download is
conducted. Select View Accepted Difference Reports from Tools menu to view the
list of reports with date and time of download.

Printing Difference Report as a PDF File

It is possible to print to a PDF-file instead of a printer if a PDF printer driver (Adobe
PDF or PDF995 or others) and the corresponding converter is installed.

To print the Difference Report as PDF File:

3BSE035980-600 A 243

Difference Report Viewer Section 1 Basic Functions and Components

1. Select File > Print in the Difference Report.

File Edit “iew Tools Help
e anve PR

Close

Wersion in

2. Select PDF995/Adobe PDF in the Print Dialog. Click OK.

print 2|]
— Prirter
Mame: FDF395 j Froperties... |

) “hseabbmmap10145EMMA-P-0000026
Status: HF Photosmart CE100 series

Type: HP Photosmart CE100 series fax
Microsoft Office Document Image Witer

where:
Comment; ™ Pririt ta file
— Print range Copie:
Al Mumber of copies: |1 3:
= Fages from:l to:l
Ijl 7| Caflate
7 Selection z 3

()8 I Cancel |

3. A Save As dialog displays. Enter the file name/folder and click Save.

4. The PDF Viewer application is launched to display the difference report in PDF
format.

Difference Report Viewer

Difference Report Viewer is a separate executable that can be installed on a PC
without the Control Builder. It is available on the installation media,
..\Engineering\Control Builder M\Tools\ Stand Alone Difference Report Viewer.

The Difference Report Viewer enables the possibility to read historically accepted
difference reports in the same format as they were opened from Control Builder M
Professional, see History of Difference Report on page 243.

Launching the executable brings up a dialog with a file browser where the user can
browse for the file to view.

244 3BSE035980-600 A

Section 1 Basic Functions and Components Source Code Report

._-:-g Difference Report Viewer - 6.0.100.22 l = e

File name:

|

| Close |

Figure 107. Difference Report Viewer

The Browse opens standard file browser that fills in a file name in the text field. The
View Difference Report File is enabled when the text field contains a valid file
name, and brings up the Difference Report user interface.

Source Code Report

The source code report shows the complete source code for the current project in the
Control Builder, and enables a review of the source code that is independent of
editors and user interfaces of the Control Builder.

The source code report is mainly used for High Integrity applications, where it is

ﬂ important to verify application and controller configuration. The source code
report is particularly useful the first time a project is downloaded, when the
difference report contains no information.

3BSE035980-600 A 245

Source Code Report Section 1 Basic Functions and Components

You perform the review by comparing the code presented in the report with the code
in the editors of the Control Builder, checking that the source codes correspond with
each other. If you find discrepancies, for example in the controller configuration,
you can try to compile and download again.

The main difference compared with the difference report is that the source code
report shows all source code from the different parts.

%% Difference Report Before Download

File Edit Wiew Tools Help
v X & %E
+-[]|F] Differences 1 <DE_Type neme="Application 1.Progrem3" library="Application 1" isReuszh] A
-0 Source Cods Repart z <Program Wame="Program3' TaskCommection="Controller_l Slow" $TLLevels'
i@ Froject constants 3 s AElEs
B3] System variable EnableSingTra | <Variable Name="DownLoadQuotaBxc' Type="bool" AccessLewel="Read Or
) 3 <Varisble Name="DurOfPFitlastOcc” Type="time" Accesslevel="Read Or
[Hain Source Unit for Project I3 <Varishle Name="Dur(OfPFSincelst" Types'time" Arcesshevel="Read Onl
=-0OE Application_1 7 <Variable Name="NoOfPFAtLastOce" Type="dint" Accesshevel="Read Onl
OB Comected Libraries 2 <Variahle Name="HNoOfDFSinceBst" Type="dint" Accesslevel="Tead Only
= D@ Types and Single Instances a <Varisble Name="OccOfLastPF" Iype="date and time" kecessLewel="Res
Application_1 10 <Yarisble Name="OccOfRst" Type="date_snd_time" AccessLevel="Read (
- B0 Application_1 11 <Variable Name="QuotaBxc" Type='"bool" Accesslevel="Read Only' Safe
T Progams 1z <Varishle pplicationNaue" Type="string[20]" Accesslevel=":
13 <Varishle pplicationScate® Type="dint' RecessLevel="Read Or
Program 14 <Variable valuationMode"” Type="bool" Accesslevel="Read Onlj
[Progiam2 15 <Varishle estMode" Type="bool" Accesslevel="Read Only" Safe
EEdProgram3 i <Yarisble TSMode" Type="bool" Accesslevel="Read Only" Safet
Programd 17 <Yarisble Name="SimulatedHW' Type='bool" AccessLevel="Read Only" :
=-[1[E] BasicLib 18 <Variable Name="RestartInhEvalllode' Type="bool" AccessLevel="Read
+ CIE 1eontib 13 <Varisble Name="AppInfoftatus" Type="dint" Accesslevel="Read Only'
Of Instance Stucture ;i :;:Z::ii:ck?
* D% Execution Order o <FunctionBlock Name="FowerFailureInfos" Type="FowerFailureInfos" i
+ 0% ColdRetain and Instance 5p | 25 <FunctionBlock Name="SystemDiacmostics" Type="SystemDiamostics" I
[0 Main Source Units 24 <FuncrionBlock Mame="SetTime" Types='SetDT® Lecesslevels"Read Only'
25 <PunctionBlock Name="SetTimeZone" Type='"SetTimeZoneInfo" Accessler ¥
4 PN ES
B Changed Lines Irzerted Lines B Deleted Lines

Figure 108. Source code report before download

The left part of the dialog displays a tree containing the different parts of the report
(see table below). To view the source code for a specific item, navigate the tree until
you find the item, and then double-click the item (or right-click the item and select
Show Source Code).

246 3BSE035980-600 A

Section 1 Basic Functions and Components

Source Code Report

Table 21. Categories under ‘Source Code Report’ item

Mandatory to

Category Displays Source Code for... |Check in SIL or
Not...

Project Constants Project Constants Mandatory
System Variable System Variable Mandatory
VariableName
Main Source Units for Main source units for project | Mandatory
Project
ApplicationName e Connected Libraries All items are

e Types and Single mandatory, except

. Instance Structure Instance Specific

i Values.
e Execution Order The item —
. CoIdB_etain and Instance | communication
Specific Values Variables with
e Main Source Units Lower SIL —is
s Communication Variables | mandatory at every
with Lower SIL download.

ControllerName e Connected Applications | All items are

e Connected Libraries mandatory

e Hardware Types

. Hardware

e Tasks

e Access Variables

e Main Source Units
Linked Communication . Downloaded Controllers | All items are
Variables s System Controllers mandatory

3BSE035980-600 A

247

Reports Generated at Download Section 1 Basic Functions and Components

Information about execution order and linked communication variables will be part
of the report, provided that a compilation has been performed.

Source code for protected types will not be displayed in the report. In the report, a
protected type is indicated by a padlock icon g If the protected type is part of a
library, it is possible to override the protection by entering the password.

To print the source code for the whole project, select File > Print. To print the
source code for selected parts of the project, navigate the tree to the item you want
to print, right-click the item and select Print Source Code. Alternatively, you can
select File > Print, and select print range Selection in the Print dialog.

ﬂ The source code report has a filter function to increase the readability of the
source code for Function Block Diagrams and Control Modules. This filter is by
default turned on (select Tools > Filter).

ﬂ You can generate a source code report without compilation or download. See
Source Code Report Generated for Project in Control Builder on page 249.

You can also generate a source code report for the project in the controller. See
Source Code Report Generated for Project in Controller on page 249.

Reports Generated at Download

Difference Report and Source Code Report Generated at Download

For a description of the difference report and source code report generated when you
perform a download of a project from the Control Builder to the controller, see
Difference Report on page 237 and Source Code Report on page 245.

ﬂ If a High Integrity controller is used, it is not possible to disable the Difference
Report and start value analysis functions.

248 3BSE035980-600 A

Section 1 Basic Functions and Components Reports Generated at Download

Source Code Report Generated for Project in Control Builder

To generate a source code report for the project in the Control Builder, without
performing any compilation or download, select Tools > Source Code Report.

13 Source Code Report (2011-12-15, 10.29.53) = B e
File Edit View Tools Help
| M T
14 SAUTTHTIAn goieE NdIimneE= L 1 YpeES redl ALWDuLleE= rewdin L
=Ll SDurc:eICode Report * | 15 </Commvariables> il
D@ Project constarts 16 <FunctionBlocks=>
-{]|} System varizble ‘Enable String Transfer’ 17 <FunctionBlock Name="AlarmCond_1" Type="AlarmEventLib.?
DDD Main Source Unit for Project 18 }’.Func'gionl3llc-c¢c Name="LewvelHigh_1" Type="BasicLib.LevelHig
= lication 1 19 </FunctionBlocks=
& aﬁppu: on-— 20 <ControlModules=
: 1§ Connected Libraries 21 <ControlModule Name="New_Control_module_type_1" Type='
& |iE Types and Single Instances 22 </ControlModules=
----- Da Application_1 23 <DiagramlInstances=
B[NarrnEverrtIJb 24 <Diagramlnstance Name="New_Diagram_Type_1" Type="Safe
= Apcaion i
- 4 Proglams = 27 <FDCodeBlock Name="Code">
-] i Diagrams 28 <FunctionCiagram=
Diagram 1 29 <Pages>
& 30 <Page Pagelo="1" PageName="">
= h g) 31 <Blocks>
B "f' BasicGraphicLib 32 <Invocation Name="New_Diagram_Type_1" DataFlowOr|_
- | Basiclib 33 <Invocation Name="New_Control_module_type_1" Dat|=
- | @ ControlAdvancedLib 34 clnuocatiion NamE=“?IE]|rTCond_1" DataFlowCrder="1" El
M- |) ControlStandardLib 35 <DataRef Name="c1(1)" />
- |) 36 <DataRef Name="sdf(1)" />
G- "fj CortrolSupportLib 37 <Invocation Name="LewvelHigh_1" DataFlowCrder="4" EN
B~ | lconlib 38 </Blocks>
- | Safety_OnlyEstop — | a9 <DataConnections=
DF&:‘“ Instance Structure 40 =DataConnection Src="bb" SrcDirect="true" Dest="New_
JT]@0 Main 5 Unit 41 =DataConnection Src="bbbb" SrcDirect="true" Dest="Ne\
Main Source Unts 42 </DataConnections> A
[g dfd 43 =/Page=>

Figure 109. Source code report generated without prior compilation

Source Code Report Generated for Project in Controller

A source code report for the project running in the controller can be generated
provided that:

* A successful download to the controller, with difference report enabled, has
been performed.

* The project in the Project Explorer is the same as the project in the controller.

3BSE035980-600 A 249

Reports Generated at Download

Section 1 Basic Functions and Components

To generate a source code report for the project in the controller, right-click the
controller in the Project Explorer and select Remote System, and then click Show
Downloaded Items. In the Downloaded Items dialog, click Source Code Report.

%% Source Code Report for Controller, (174.16.12.182)
File Edit Wiew Tools Help

g %ni

= D Source Code Repot A
=-0OE Application_1

0@ Froject Consta
O&] Swstem Yariabl
OE Correctsd Lib
=i Types and Sin
OE 2pplicatior
=0 #pplicatior
+-[J48F Frogra
—|-[#H=F Contro
BE

=-OF BasicLib
+-[J4F Functi
-2k Contro
Pr

OOOOOROERC]
T

<

<DR_Type name="Application l.New Control module type" library="Application 1" isR
<ControlModuleType Name="New Control module type" Protected="0" Hidden="0" Ecop

=/ControlModuleTypes
</DR_Typesr

Figure 110. Source code report generated for project in controller.

250

3BSE035980-600 A

Section 1 Basic Functions and Components Portability Verification

Portability Verification

This menu is located under the menu option Tools > Verify Portability in the
Project Explorer. This functionality verifies that the source code doesn't contain any
characters with an ASCII value above 127. If a project, containing characters with
ASCII values above 127, is moved between computers with different local system
settings it may result in errors when the Control Builder project is loaded.

Performance Management

The compiler statistics is a separate tool accessible from the tools menu in the
Control Builder as shown in Figure 111. When it is started, the currently opened
project in the Control Builder is compiled, and the collected information is saved in
XML format in the 'Results' subfolder of the working folder, which is presented in a
separate dialog, see Figure 112. Only information about compilable applications
can be gathered by the tool. If a project contains applications with errors, only
statistics of the correct applications is presented. In this case the statistics presented
is taken from a part of the project. One file is generated per application and it
replaces old ones if it previously exists for that application. The tool can also be
started from a Control Builder with no project loaded. In that case only information
gathered from previously generated files is displayed.

3BSE035980-600 A 251

Performance Management

Section 1 Basic Functions and Components

File Edit Wiew

Window Help

| | 2

Ell Test Mode

Orling F5

%“ Download Project and Go Online Ch+D

Save "ColdRetain-values

Show Current User

Source Code Report
Wiew Accepted Difference Reports

Evaluation Report

Skart LEG Session
End LEG Session

‘erify Type Link Consistency
Yerify Portability

Maintenance 4

Setup 4

Figure 111. Compiler Statistics Tool

16

133691
24211135
1232008 Hebs | Updete |
Type satisics :
o e =0 ===]—
B o R R
Icorkb AlsmCondcon 0 e B2 = [s018 16538 o] |
| Bascl & TOn =3] [eame B0 = |2 = |20z
Baseln TP I @ | ez o |eame |zmz |2z | 168072 |_
BaskcLb SwecleTme 3 3 | 250810 me E3 [107s E3 [z
.Mmsmmm .3‘|§| 82 .ﬁﬂlﬂ 2140 .5322 -W .53:'3? -?
| Basclb RS |24 249 1 m 2408 |7y B | 2me0m
| BasclbbeToon 1683 1649 [7ses 3104 1648) = S
Bosiclb DieTcBic [1334 13 80 nx 131 =) 10672
| Iconlb GioupStatodeicon 1272 2] =3 " 1272 1212 [0 lo
| lcorib Stahatioon |10 1033 [am3m 6 |10 o la lo =

* column alected by the Exclude subinitances’ seling
B empty type, not doveioaded 1o conbioler

Figure 112. Compiler Statistics dialog

252

3BSE035980-600 A

Section 1 Basic Functions and Components Project Documentation

The tool presents the following information:
* The number of runtime instances of a type.

* The number of sub-instances of a type and total number of instances caused by
the type.

* The memory cost of one instance of the type, both including sub-instances and
without sub-instances.

* The total memory cost for all instances of the type. Both including sub-
instances and without sub-instances.

* The number of code blocks of the type.

* The number of execution entities (Code calls) for all instances of the type, both
including sub-instances and without sub-instances.

* The number of parameters passed by value of a type and the number of bytes
passed by value.

* Asabove for all instances of the type, both including sub-instances and without
sub-instances.

Project Documentation

Project Documentation function generates documentation of libraries and
applications (in offline mode) for all the items in a selected project explorer folder.
This function can be used to make a reference book for a library, an application, a
controller, or a single object in a folder.

The project documentation function provides you with filter options while
documenting your control project. The filter helps you specify parts of the control
project and keeping the document size to a minimum. All documentation is
produced as Microsoft Word documents as default, hence Microsoft Office must be
installed.

ﬂ All project documentation will be connected to a standard template. But you can
create templates of your own for the documentation.

A complete overview of a library, an application, a controller, or an object in these
folders can be exported to a file for printout from Project Explorer. However, it is
not possible to select a folder at the root level, for example the Libraries object

3BSE035980-600 A 253

Project Documentation Section 1 Basic Functions and Components

folder. As an example, it is possible to filter out all ColdRetain variables and
Parameters in an application.

If the project documentation function is used in Online mode, the cold retain values
can also be obtained.

Printing Project Documentation
To print documentation, in Project Explorer:

1. Right-click any object in the tree view and select Documentation. The
Documentation dialog box opens.

2. Click More to filter information. The Editor Properties dialog box opens.

; 5
Editor Properties @
Objects and Types | Editor Items | Used Types

Select the items to indude in the document.

Types

Function block types
Control module types
Indude control module graphics in the documentation

Diagram Types

Objects

Control Modules
Connections

Diagrams

Programs

[OK][Cancel][Help]

Figure 113. Editor Properties dialog for filter options.

The Editor Properties dialog box contains three main areas, which are represented
by tabs in the dialog, see Figure 113.

* Objects and Types,

254 3BSE035980-600 A

Section 1 Basic Functions and Components

Objects and Types

e Editor Items,

* Used Types.

Objects and Types

This is the start level for filtering the contents of your application or library. As you
can see, all options have been selected by default. You adjust the filter setting by
exclude an option.

Editor ltems

Figure 114

Editor Properties

Objects and Types | Editor Items | Used Types

Select the items to indude in the document.

Dedaration Pane

Communication variables
Global variables

External variables
Parameters

Function blocks

Control Modules

Diagrams

Source code

Code blocks
Properties and Settings
User permissions

[Access levels

[o

] [Cancel

] [Help]

. Editor Items tab for selecting items inside filtered types and objects.

After adjusting the filter settings for types and objects, another filtering can be done
per item. You can now specify which items to include/exclude for the previous
selected types and objects. The items are grouped under Declaration Pane, Source
code and Properties and Settings. All items are set by default, except the Access

3BSE035980-600 A

255

Used Types Section 1 Basic Functions and Components

Level option, (see Figure 114).

ﬂ Access Levels are used for controlling access to online resources in SIL
applications.

Used Types
(cororene N e

[Objects and Types | Editor Ttems | Used Types |

Select if you want the document to only indude data for typesin a
Library that are used (have one or more instances) in an Application or a
Library.

Used Types

Filter Options:
Library

Used Types must
be checked.

Select the Library to document.

TankMainLib 1.0-0 -

Application/Library

Select the Application or Library to use as reference when
searching for type instances.

[Applimﬁon_l -

[oK] [Cancel] [Help]

Figure 115. Used Types dialog for printing used types only.

This filtering option selects types in a library that has an object (instance) in an
application or inside another library. The resulting documentation from this dialog
will only include the information for those types that have been matched as a
reference in the selected application or library (see the drop-down menus in
Figure 115).

In order to select a library or an application/library reference from the drop-down
@ menus, you must first check the Used Types check box.

256 3BSE035980-600 A

Section 2 Alarm and Event Handling

Introduction

An important part of an automation system is to be able to supervise and interact
with the system. For this to be possible, information about the status of the
supervised processes must be made available to the operator. Both the operator and
the controllers need to be able to interact with the process.

This requires that information is transferred to and from the operator interface, in
the form of commands, alarms, and events.

Alarms and events are generated in three ways:
* by using objects based on library types containing alarm and event functions,

* by using objects especially made for alarm and event handling (based on the
types in the Alarm and Event library),

* by hardware units throughout the system (system alarms).

This section describes how to add alarm and event handling when there are no built-
in functions for this. For information on how to configure alarm and event handling
using objects that already contain alarm and event handling functions, refer to the
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981%), and
to online help for the object in question.

ﬂ This chapter describes the alarm handling functions in the Alarm and Event
library. Signal objects, process objects, and a number of control objects have
built-in alarm functionality that is similar to the functions described in this
section. For a description of built-in alarm functions, see the references above.

3BSE035980-600 A 257

Alarms and Events Section 2 Alarm and Event Handling

Alarms and Events

Alarms and events inform the operator of the status of processes and systems. An
alarm represents a named state, also called an alarm condition (this is an OPC
standard term). Events give information about changes that is needed to analyze
various error situations. The OPC standard defines three kinds of events:

* Condition-related events, which are created when an alarm state changes.
» Simple events, which are created at occurrences like when a motor starts.

* Tracking-related events, which are created at occurrences like an operator
action.

Alarms are usually presented to the operator in alarm lists, while events are
presented in event lists. Alarms and events can also be handled by various parts of
the system without the involvement of an operator, so that, for example, a process is
stopped when a certain alarm goes on. Alarms and events, the functions can be used
in SIL applications, but they are restricted to be used only for non-SIL purposes, for
example indications and does not influence the critical loop. Any violation of this
might corrupt the safety application and in SIL3 it could also lead to a safety
shutdown.

Alarms and events are collected from controllers and other parts of the system, and
transferred to subscribing OPC clients (operator interfaces) using an OPC server,
see Alarm and Event Communication on page 289.

The behavior of an AC 800M High Integrity controller is in some cases different
from the behavior of other controllers. Limitations that apply when running SIL
applications in a High Integrity controller are described in the System 800xA
Safety AC 800M High Integrity Safety Manual (3BNP004865%).

Alarms and events are often logged, for use in trouble-shooting and when tracing
the origins of an error, see Section 5, Maintenance and Trouble-Shooting.

There are two main types of alarms and events:

* Process alarms and events are generated by changes in the alarm condition of a
monitored process signal, see Process Alarm and Event Generation on page
259.

* System alarms and events are generated by a change in the status of the system
itself, for example by a hardware failure or by the application via function

258

3BSE035980-600 A

Section 2 Alarm and Event Handling Alarm and Event Library

block (SystemAlarmCond). See Detection of Simple Events on page 269 and
System Alarm and Event Generation on page 282.

Alarm and event handling also requires clock synchronization, in order for time
stamps to be reliable when trying to analyze a sequence of events. See Time Stamps
on page 286 and Sequence of Events (SOE) on page 274.

All alarms and events follow the OPC Alarm and Event specification.

Alarm and Event Library

The Alarm and Event library contains function blocks and control modules for:
* Creating alarms and events when a monitored signal of type bool changes,

* Creating simple events with user-defined data, for use in, for example, batch
applications,

e Printing alarms and events.

Additional Information

For examples of how to use components from the Alarm and Event library, see
Alarm Examples on page 297. For details on how to use alarm and event functions,
see Alarm and Event Functions on page 316. This sub-section also describes how to
set up printers and print queues.

For a complete list of all objects in the Alarm and Event library, see the manual
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981*).For
information on which alarm and event types that can be used in SIL applications,
see online help for the Alarm and Event library or the reference above.

Process Alarm and Event Generation

Process alarms and events can be generated using a number of objects based on
types in the Alarm and Event library.

* The function block types AlarmCond and AlarmCondBasic, as well as the
control module types AlarmCondM and AlarmCondBasicM, can be used to
generate alarms and events each time there is a change in a monitored signal (of

3BSE035980-600 A 259

Process Alarms and Events Section 2 Alarm and Event Handling

type bool). See Process Alarms and Events on page 260.

The function block type AlarmCondBasic and the control module type
AlarmCondBasicM are versions of AlarmCond and AlarmCondM, which
consume less memory. These types do not allow inverting the monitored signal
and they support internal time stamps only.

* The function block type SimpleEventDetector can be used to generate a simple
event whenever a monitored signal of type bool changes. See Detection of
Simple Events on page 269.

* The function block type DataToSimpleEvent can be used to create a simple
event and add user-defined data to it. Detection of Simple Events on page 269.

There are also system generated alarms and events, see System Alarm and Event
Generation on page 282.

Process Alarms and Events

Alarm condition-driven alarms and events are created when the monitored signal
changes, that is, when an alarm condition is fulfilled. This monitored signal must be
of type bool and is typically taken from another function block or module in the
system, or from an external device. The alarm condition function blocks and control
modules are state machines, which change from one state to another following a set
of configurable rules, whenever the monitored signal changes. This is defined as a
change in the alarm condition. Each time an alarm condition changes, an event is
created as well.

All alarm condition objects can be used in time-critical tasks and also most of
them in SIL certified applications.

AlarmCond and AlarmCondM

The two basic types for creating alarm conditions are the function block type
AlarmCond and the control module type AlarmCondM. The principle behind the
two is the same. Through parameters, it is possible to connect to the monitored
signal, add information to the alarm, provide other objects with status information,
and to control the behavior of the alarm condition. In Figure 116, the function block
type AlarmCond is used to illustrate the function of the different parameters.

260

3BSE035980-600 A

Section 2 Alarm and Event Handling Process Alarms and Events

Signal
In parameters used for SignallD
the monitored signal _
UseSigTolnit
Inverted
ExtTimeStamp |

TransitionTime

Message AlarmCond
In parameters used SrcName | function block
to add information CondName I
to the alarm Severity '
Class Out parameters for the
status of the alarm condition
EnCond — |
In parameters used to DisCond —— — CondState
control the behavior of AckCond Status
the alarm condition FilterTime | Error
EnDetection |
AckRule ——

Figure 116. The function block AlarmCond.

3BSE035980-600 A 261

Process Alarms and Events

Section 2 Alarm and Event Handling

®

If you change the value of an Edit parameter, this change will not take effect until
after a warm or cold download.

The following alarm condition parameters are Edit parameters:
* ExtTimeStamp,
J SignallD,
. UseSigTolnit,

J SrcName,

. CondName,
e Jnverted,
e AckRule.

The Description field in the parameter editor starts with EDIT if the parameter is
an Edit parameter.

The control module type AlarmCondM has similar functions and uses the same
parameters as the AlarmCond function block type.

For more information on parameters and their possible values, also see online
help and the Description column in the parameter editor.

Alarm Condition Types with Reduced Functionality

In applications where it is necessary to minimize memory consumption, the
function block type AlarmCondBasic and the control module type
AlarmCondBasicM offer an alternative to AlarmCond and AlarmCondM.

Basically, they are the same as their counterparts AlarmCond and AlarmCondM,
with the following differences:

They consume less memory.
They always use acknowledgement rule number 1 (AckRule=1).

It is not possible to invert the in signal, that is, the Inverted parameter cannot be
used.

External time stamps cannot be used, that is, the parameters ExtTimeStamp and
SignallD are not used.

Remote time stamps cannot be used, since the parameter TransitionTime cannot
be used.

262

3BSE035980-600 A

Section 2 Alarm and Event Handling Process Alarms and Events

Select Signal to Monitor

The monitored signal can be internal (that is, reside in the controller), or external
(that is, reside outside the controller).

Which type of signal that is monitored is indicated by the parameter ExtTimeStamp.
If this parameter is True, the external signal indicated by the hardware address in the
parameter SignallD is monitored. If ExtTimeStamp is false, the parameter Signal is
used to connect to the monitored signal.

The parameter Inverted can be used to invert the in signal (True=invert signal).

UseSigTolnit is used to indicate from where the initial value of the signal should be
taken (the state machine needs a start value). This parameter is only relevant when
the monitored signal is external. When UseSigTolnit is True, Signal is used to get an
initial value.

Control the Behavior of the Alarm Condition
The following parameters can be used to control the behavior of an alarm condition:

* AckRule determines which acknowledgement rule is used. The
acknowledgement rule decides the behavior of the alarm condition when an
alarm has been created. This parameter is an EDIT parameter (that is, it is used
for configuration purposes only, and cannot be changed without a restart) and it
cannot be changed from the code.

* FilterTime determines how long the signal must deviate before a change is
considered to have taken place. The filter time should be set so that glitches do
not cause an alarm.

* TransitionTime determines the time of the event occurrence when the Signal
change. If the value is equal the default value (the time) will be read inside this
FB instead

* EnDetection enables detection when True. When this parameter becomes
False, the alarm condition goes to an inactive state and the signal is no longer
monitored. By setting this parameter to False, you will stop detection of new
alarms and leave existing alarms unacknowledged.

* AckCond is used to acknowledge an alarm (True = acknowledge). It is normally
used to acknowledge alarms from simple devices such as push buttons.

3BSE035980-600 A 263

Process Alarms and Events Section 2 Alarm and Event Handling

DisCond disables the alarm condition when True.

EnCond enables the alarm condition when True.

How the condition state changes when an alarm is acknowledged depends on the
value of the acknowledgement rule (AckRule) parameter. This parameter is available
in the AlarmCond and AlarmCondBasic function blocks, and in the AlarmCondM
and AlarmCondBasicM control modules.

®

The AckRule parameter is normally set to 1 (normal). It cannot be changed
online.

There are five acknowledgement rules:

AckRule = 1, “normal handling”, alarms must be acknowledged and inactive
before the “normal” state is resumed,

AckRule = 2, alarms need no acknowledgement,
AckRule = 3, alarms return to “normal” state on acknowledgement,
AckRule = 4, not used (reserved for future use),

AckRule = 5, alarms return to “normal” state when a sum system alarm is
acknowledged and returns to its normal state.

For more information about the different acknowledgement rules, see
Acknowledgement Rules — State Diagrams on page 317.

Alarm and Event Information

There are a number of parameters for adding information to alarms and events:

Message can be used to add a textual description of the alarm condition, for
example, “temperature low”.

SrcName identifies the alarm source, for example, “Motor101”.
CondName identifies the alarm condition, for example, “Level_High*.

Severity indicates the degree of severity, where 1 is the least severe, and 1000 is
the most severe level. This parameter is very useful when filtering alarms and
events.

Class can be used to classify the alarm (1-9999). This parameter is also useful
when filtering events,

264

3BSE035980-600 A

Section 2 Alarm and Event Handling Process Alarms and Events

This information can be displayed in the operator interface and written to various
logs. It can also be used to sort and filter alarms and events.

Since the source name and the condition name identify the alarm, the combination
of the two must be unique within a controller. Any attempt to define an alarm
condition that results in a non-unique combination of source name and condition
name will result in an error (the Error parameter will become True). Also, a simple
event is generated.

If an OPC server detects a non-unique alarm (that is, two controllers have the same
combination of source name and condition name), a system simple event is
generated.

There are two alternatives for indicating the source of an alarm or event:

* Leave the SrcName parameter empty. The Name parameter of the alarm owner
(see Alarm Owner Concept on page 268) will be used as the source name.

For a program or application to have a source name, you need to create a variable

@ called Name in the program or application. If the SrcName parameter is left
empty and the alarm owner is a program or application, the value of the Name
variable will be used as the source name.

* Set the SrcName parameter to whatever source name you want to use.

@ All alarms belonging to the same alarm owner must have the same source name.

The condition name is normally the name of the alarm condition function block or
control module instance, for example Level_High, but could also be set via the
CondName parameter.

ﬂ Condition names are case sensitive, that is, Level_High is not the same as
LEVEL_HIGH.

The same condition names should be used throughout the whole project, since it is
important that the operator has a limited set of condition names to deal with. Using
condition names in a consistent and structured manner also makes it easier to
understand the process.

3BSE035980-600 A 265

Process Alarms and Events Section 2 Alarm and Event Handling

For detailed information about source name and condition name restrictions and

@ syntax, see online help for the Alarm and Event library. For information on NLS
handling for alarms and events, see Translation — NLS Handling of Strings on
page 296.

The class parameter (Class) can be used to classify all alarms.

ﬂ The default class is 9950 for all system alarms and system events. All other
numbers can be used as required. Possible values are 1-9999. The default value
can be changed by changing the CPU setting AE System AE class.

Status Information

There are three parameters that can be used to retrieve status information for an
alarm condition:

e CondState indicates the state of the alarm condition (0-6, see below).
e Errorindicates an error in the alarm condition.

* Status gives the status code from the latest execution.

If a parameter is outside its defined range, the Status parameter will take a
@ negative value or the value 703.

Alarm conditions are state machines, which change from one state to another
following fixed rules. The most important reason for an alarm condition to change is
a change in a monitored signal. The alarm condition (indicated by the parameter
CondState) also changes if:

e an alarm is acknowledged,
J an alarm is disabled,
J an alarm is enabled,

. auto-disable occurs.

266 3BSE035980-600 A

Section 2 Alarm and Event Handling Process Alarms and Events

The condition state (CondState) parameter indicates the state of an alarm. An alarm
can be in one of seven states:

Integer value |State

0 Alarm condition not defined
Disabled
Enabled, Inactive, Acked - Idle

—

Enabled, Inactive, Unacked

Enabled, Active, Acked

Enabled, Active, Unacked
Enabled, AutoDisabled, Unacked

(o220 @ 2 B I~ I @S I B \ O)

The CondState parameter can be used to pass the state of an alarm to other parts of
the software.

To see the state of all alarm conditions for a certain object in Project Explorer,
@ right-click the object and select Alarm Conditions from the context menu.

Autodisable

AC 800M controllers have a CPU parameter called AE Limit auto disable. This
setting controls the number of times an alarm can go on and off, without being
acknowledged. When the limit is reached, the alarm condition is automatically
disabled, and the state AutoDisabled is entered. The default setting is 3, and the
maximum setting is 127. If AE Limit auto disable is set to 0, autodisabling is turned
off and alarms can be activated an unlimited number of times.

ﬂ An alarm that is in AutoDisabled state does not send any event (even though the
alarm condition changes), until it is acknowledged. See Acknowledgement
Rule 1 on page 317.

3BSE035980-600 A 267

Process Alarms and Events Section 2 Alarm and Event Handling

Alarm Owner Concept

The alarm owner concept is important, since it is the key to manipulating the source
of an alarm. Not all objects in the Project Explorer tree hierarchy are alarm owners.

For an object (for example, a tank object) to be an alarm owner, it must fulfill three
criterias:

1. It must have the attribute Alarm Owner set to True.

2. Ithas to be the last link in an unbroken chain of alarm owners, all the way from
the program or application, down to this particular object. For an illustration of
the concept, see Alarm Owner Examples on page 304.

3. It must have Aspect Object set to true.

4. It must not be a sub object to an object with the attributes hidden or protected.
The attribute "Sub Objects visible in PPA" will not affect the Alarm ownership.

If an object is not an alarm owner, or the alarm owner chain is broken, the system
looks further up in the hierarchy, until it finds an object on a higher level that is
directly above the origin of the alarm or event, and fulfills the above criteria.

This is the point of the alarm owner concept. By not setting the Alarm Owner
attribute for low-level objects, alarms and events can be connected to an object on a
level higher than their true origin. If no alarm owner is found, the program or
application itself becomes the alarm owner. The following objects are always alarm
owners:

* Applications,
* Programs.

The Name parameter of the alarm owner or the Name variable corresponding to
the name of the alarm owner must be initialized before the alarm condition
changes (triggering an alarm).

Each object that is an alarm owner creates three aspects, which can be viewed from
both the Object Type Structure and the Control Structure:

* The Control Alarm Event aspect lists all alarm conditions associated with the
object.

* The Alarm List aspect presents alarms associated with the object during
operation.

268

3BSE035980-600 A

Section 2 Alarm and Event Handling Detection of Simple Events

* The Event List aspect is used to present an event list.

@ If you want to, fshow alarms for all objects, you can override the above aspects.

Detection of Simple Events

A simple event detector generates a simple event each time there is a change in the
monitored signal. A simple event detector can be implemented by means of the
function block type SimpleEventDetector.

SimpleEventDetector can be used with internal, external or remote time stamps.
This function block type is connected to the monitored signal exactly the same way
as the function block type AlarmCond, that is, using the parameters Signal,
SignallD and UseSigTolnit. See Select Signal to Monitor on page 263. It is also
possible to set the filter time (via a FilterTime parameter).

ﬂ For SimpleEventDetector, the following applies:
If ExtTimeStamp is True, FilterTime is not used.

The function block DataToSimpleEvent can be used to add data to a simple event.
See Simple Events on page 286.

For more information on how to configure these function blocks, see alarm and
event online help.

Built-in Alarm and Event Handling in Other Libraries

This section deals with alarm and event handling based on the Alarm and Event
library. However, alarm and event functions are built in to a number of other types in
the standard libraries that are delivered with the 800xA system.

This sub-section gives a short introduction to signal objects and to the built-in alarm
and event functions of process objects and control loops. It also describes the inhibit
and disable functions for these objects, since they are relevant to the interaction with
the types in the Alarm and Event library.

Alarm and Event Handling Using Signal Objects

The Signal Library contains types that can be used to create representations of
objects with an input or output signal, for example a temperature sensor. By using a
signal object, you can go to manual mode and set the value of the signal, as well as
supervise the signal and generate alarms when the signal deviates.

3BSE035980-600 A 269

Built-in Alarm and Event Handling in Other Libraries Section 2 Alarm and Event Handling

®

Never use types from the Signal Libraries to represent all I/O channels and if
used, types from SignalBasicLib should be taken. This will consume a lot of
memory and will result in poor performance. Use signal objects when there is a
real need to control and monitor an I/O signal. Signal objects normally represent
an object with a single signal.

For more information about the Signal Libraries, see online help and the manual
System 800xA Control AC 800M Binary and Analog Handling (3BSE035981%).

Alarm and Event Handling in Control Loops and Process Objects

Alarm and event handling is built into a number of library types, such as control
loops and process objects. These alarms and events are handled the same way as
other process alarms and events.

Alarms and events can be generated directly by those objects, each time the alarm
condition is fulfilled, or the object can generate a bool signal that can be connected
to an alarm condition object.

For a description of how to configure built-in alarm handling for various library
types, see online help for the type in question, and the System 800xA Control AC
800M Binary and Analog Handling (3BSE035981%).

Inhibit and Disable Alarms and Events

Sometimes there is a need for temporarily suspending alarm and event generation.
This can be done for all objects with built-in alarm handling:

* Disable — the alarm condition is disabled, no alarms and events are generated,
nothing is sent, and no control action is taken (that is, the system does not act
upon the alarm condition).

Normally, the control action will be a boolean signal that causes a certain
reaction, for example, a signal that stops a motor. However, a control action could
also cause a more complex series of actions.

* Inhibit — the control action itself is inhibited (that is, the system does not act
upon this alarm or event), while alarms and events are still presented to the
operator in the operator interface.

Inhibit is only available in the types listed under Inhibit Parameters on page 272.

270

3BSE035980-600 A

Section 2 Alarm and Event Handling Built-in Alarm and Event Handling in Other Libraries

Alarms and events can be disabled from the faceplate and from alarm list, as well as
from the application, via interaction parameters.Figure 117 illustrates the difference
between inhibiting and disabling an alarm.

In a SIL application, alarms cannot be enabled or disabled via the MMS event
service. However, alarms can be disabled or enabled from the IEC-61131-3 code.

©

Disable (from faceplate)

|
|
|
|
Alarm & Action |
|
|
|
|
|
|

Faceplate

O

|

Enable &

| I
| |
| |
| |
| |
| |
| |
:Alarm |
|Condition |
' » & |
| Alarm Server| Hide |
| Auto-disaT> Cond | | |
| ” i I
| ‘ | .

| , | Alarm List |
| Disable (from Alarm 1_i1;t) |
| — & || |
E———e Control Action | |
| Inhibit | | |
| 1 Operator |
. Controller 1 Workplace |
- - - J L - - - -

Figure 117. Inhibit and disable functions in alarm handling for AC 800M (for a list
of objects with inhibit functionality, see Inhibit Parameters on page 272). Event
handling works in a similar way.

3BSE035980-600 A 271

Built-in Alarm and Event Handling in Other Libraries

Section 2 Alarm and Event Handling

In the above figure, the alarm can be disabled from the faceplate and from the alarm
list. It can also be disabled if the auto-disable function is triggered.

®

Disable from the alarm list only disables the alarm itself, while Disable from the
faceplate disables both the alarm and the control action connected with it.

When Inhibit is set, the alarm still exists and can be seen in logs, face plates and
alarm lists. It is only the control action that is inhibited.

Hide is set from the operator interface, see operator workplace documentation.

Inhibit Parameters

For an example of how to use the inhibit function, see Alarm Examples on page

The inhibit function is present in the following standard library types.

Signal library

SignallnReal
SignalReal
SignallnBool
SignalBool
SDLevelM
SignalBoolCalcInM
SignallnBoolM
SignallnRealM
SignalReadCalcInM
SignalSimpleInRealM

Standard Control library

Level6CC
LeveldCC
Level2CC

Supervision library

DetectorBool
Detector1Real
Detector2Real
DetectorRemote

DetectorLoopMonitorReal

OutputBool

272

3BSE035980-600 A

Section 2 Alarm and Event Handling Built-in Alarm and Event Handling in Other Libraries

— SupervisionOverview (no disable function)
— OutputOrder (no disable function)

* Supervision Basic library
— SDBool
— SDInBool
— SDInReal
— SDLevel
— SDOutBool
— SDReal
— SDValve
— InfoAlarmSDInReal

* Fire&Gas library
— FGOutputOrder (no disable function)
— CO2 (no disable function)

In these types, control actions are inhibited by setting a parameter InhXAct, where X
stands for the name of the condition, for example InhGTHAct (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition (event generation)
has been inhibited or not.

Disable/Enable Parameters

The disable function is available in all types that contain built-in alarm handling. An
alarm condition is disabled by setting the EnableY parameter to False, where Y
stands for the name of the condition, for example EnableGTH (where GTH stands
for Greater Than High).

There are also parameters for indicating if the alarm condition has been disabled or
not.

ﬂ There are additional parameters that affect the behavior of built-in alarm
conditions, for example AEConfigX. For more information on parameters, see
online help for the object in question (select and press F1).

3BSE035980-600 A 273

External Time Stamps (S800 I/0O)

Section 2 Alarm and Event Handling

External Time Stamps (S800 1/0)

A special form of external time stamp is created by external units with Sequence-
of-Event (SOE) support, such as DI831. A low level event is then time-stamped
by the I/O unit and sent to the controller to be dealt with. This triggers alarms or
simple events in the controller. The change of status is time-stamped with the low
level event time stamp.

Sequence of Events (SOE)

Some I/O modules add a low-level time stamp to an alarm or event when it detects a
change in a signal. Instead of using the time stamp created by the controller when it
detects a change in the monitored signal (that is, when the task is executed), the
controller simply adds the time stamp created by the I/O module. In this way, the
time stamp shows when the change actually occurred, instead of when it was
detected by the controller.

For this to work, the I/O module will have to support Sequence of Events (SOE).
SOE is currently supported on ModuleBus and PROFINET IO only. For
information on enabling/disabling and configuring SOE, see online help for S800
I/0.

External Time Stamps IEC 61850

Sequence of Events (SOE) for IEC 61850

CI868 module supports Sequence of Events for incoming Circuit Breaker position
status containing IED Time Stamps (External Time Stamp) reported from other
IED.

The IEDs associated with the Circuit Breaker IEDs adds a time stamp value along
with status value and updated in RCB dataset whenever a change in Circuit Breaker
position is detected.

CI868 module captures this status and external time stamp value assigned as
IEC 61131 - 3 variable in CSWI or XCBR LN objects and generates respective
External Events.

274

3BSE035980-600 A

Section 2 Alarm and Event Handling External Time Stamps (PROFINET 10)

These External Events can be used as input for AlarmCond and
SimpleEventDetector function block in IEC 61131 -3 application to generate Alarm
and Events.

In this way the Alarm and Events generated from External Events will have the
following attribute:

* Alarm and Event with Time stamp of IED instead of AC 800M Controller.

* Alarm and Events with source objects mapped to the process Object or
Conducting Equipment instead of CSWI or XCBR hardware object library in
Control Builder tree.

* Alarm and Events generated as process Alarm and process Events instead of
System Alarm and System Events, thereby allowing further categorization of
process Alarm and Event in Alarm and Event list.

For more information on External Events refer to the AC 800M IEC 61850
Configuration for CI868 (9ARD171385%) manual.

External Time Stamps (PROFINET 10)

Sequence of Events (SOE) for PROFINET IO

Time stamped events are passed by PROFINET IO and CI871 through the controller
and are indicated in the AC 800M OPC Server in the Engineering Workplace. The
time stamping is done by the PNIO device. The PROFINET IO SOE is supported by
use of the ABB SOE profile.

The following are the definitions and functions of ABB SOE Profile:

1. Alarms from the PNIO device are converted into an External Event. These
External Events transferred through the AC 800M OPC-Server are indicated in
the EventList with their corresponding source address.

2. The external event can be picked up from the IEC-61131 Application by a
Function block like alarm condition and converted to a process alarm.

3. The time synchronization of PNIO device is done externally and not by the
CI871. It is the responsibility of the PNIO devices to get a time synchronization
managed (through access to the central time master in the system). The PNIO
device defines the information to be time stamped.

3BSE035980-600 A 275

External Time Stamps (INSUM)

Section 2 Alarm and Event Handling

4. The ABB SOE profile is handled as a process alarm on PROFINET IO with a
vendor specific User Structure Identifier (USI).

5. Once the SOE alarm is acknowledged (to ensure that it is not lost). The PNIO
device deletes the alarm only after receiving the acknowledgement from the
controller. The controller sends the acknowledgement after storing the alarm in
the non-volatile memory.

It is recommended to configure Function blocks as Alarm condition for process
signals only where the process values can be used as initial value in case of restart
behavior. Otherwise alarms can get frozen.

External Time Stamps (INSUM)

Creating an Application that Handles INSUM Alarms

All INSUM devices (MCU, Circuit Breaker) have supervision functions that can
report alarms. The different device types supervise and report specific alarm types.
The alarms are reported in specific Network Variables.

MCU s report the alarms in the Network Variable NVAlarmReport.

The user can decide if there should be a summary entry that tells that there are some
alarms (one or more) in the device. It is possible to have a separate summary alarm
for warnings and a separate alarm for trips.

This subsection discusses both methods, receiving INSUM alarms in the application
program, and generating alarm to the alarm lists. The user can decide to use either
methods or just one of them. For more information refer to System S800xA Control
AC 800M Binary and Analog Handling (3BSE035981*) manual.

Receiving INSUM Alarms in the Application

To receive alarms in the application program the INSUMReceive function block is
used in the same way as when receiving other input network variables from an
INSUM device, choose the correct NVindex and data type. The data type should in
this case be NVAlarmReport (see also the MCUAlarmTrips/WarningsStructs
regarding how to interpret the bits).

The time stamp set by the INSUM device in the alarm variable is presented in the
two time fields of the NVAlarmReport. This time information is only correct if the

276

3BSE035980-600 A

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

clock in the INSUM device is synchronized. The system software does not fill in
these fields if the time stamp received from the INSUM device is incorrect. (See
below).

Generating Alarms for Alarm Lists

The controller system software generates alarms for the alarm and event lists in the
system, based on the updates of the INSUM alarm information if the parameter
Generate Alarms on the device is set to Enabled or Enabled Trip/Warning or
Enabled Detailed.

If the time stamp received from the INSUM device is correct (a valid time) this time
stamp is used for the generated alarm message. If it is not, the system software tags
the generated alarm message with the current controller time.

If the parameter Generate Alarms is set to disabled, alarm information can
ﬂ anyway be sent to the alarm and event lists by the application. This can be done

by creating an AlarmCond function block and to connect information received

from an INSUM device to the parameter Signal and to set

External Time Stamp = FALSE .

In this case, the alarm messages are time stamped in the controller. If this time
accuracy is sufficient, this method is probably to be recommended because it is
easier to configure. No System Clock is needed in the INSUM system. If you let the
system software generate the alarms it can use the time stamp given by the INSUM
devices. If the INSUM System Clock is used this is a much more accurate time
stamp.

Summary Alarms, One Alarm Object Per Device

Generate Alarms = Enabled means that the system software internally (without
needing INSUMReceive) creates a subscription of the alarm variable from the
INSUM device. When this variable is updated from the INSUM system, the system
software evaluates the content.

If a bit (one or more) which is classified as an alarm (e.g. not the bit "Started1") is
set and no such bit previously was set, the system software generates one alarm
message.

3BSE035980-600 A 277

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

If an alarm update is received with the change that no alarm classified bits are set
any more, the system software generates the alarm-off message.

Summary Alarms, One Alarm Object For Warnings and One for Trips

Generate Alarms = Enabled Trip/Warning. The difference compared to the handling
for Enabled is that the system software generates one specific alarm message when
a warning bit is set and another alarm message when a trip bits are set.

278

3BSE035980-600 A

Section 2 Alarm and Event Handling External Time Stamps (INSUM)

This means that there will be one alarm message for the first warning and one for
the first trip. To use this setting two AlarmCond blocks should be created for each
INSUM device, one for the warnings and one for the trips. If an alarm update is
received with the change that no warning bits are set there will be an alarm off
message for the warnings. The same applies for the trip bits.

Detailed Alarms

Generate Alarms = Enabled Detailed. The difference compared to the handling for
Enabled (see Summary Alarms, One Alarm Object Per Device on page 277) is that
for each alarm classified bit which is set (and previously was not set) the system
software generates one separate alarm message. If an alarm update is received with
the change that an alarm classified bit that previously was set now is reset, the
system software generates the alarm off message for that bit.

ﬂ Using Enabled Detailed means that one AlarmCond block should be created for
each alarm type that the INSUM device sends. For a large INSUM configuration
where more than just a few alarm types per device should be supervised this
easily leads to a very large number of AlarmCond blocks.

Creating AlarmCond Blocks for Generated Alarms

The function block AlarmCond should be used to get descriptive messages in the
event and alarm list and get an association with an alarm object. AlarmCond is
associated with the alarm messages that the system generates by setting
ExternalTimeStamp=TRUE and to identify the alarm object with the parameter
Signalld.

Alarm Generation = Enabled

The Signalld should be a string that specifies the hardware position for the INSUM
device. This is done with the syntax C.G.D, where:

* Cis the position of the CI857,
* Gis the position of the INSUM Gateway and,

* Dis the position of the INSUM device. The position numbers are separated by
adot ..

3BSE035980-600 A 279

External Time Stamps (INSUM) Section 2 Alarm and Event Handling

Example:

* The syntax 2.1.204 means the alarm for device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Trip/Warning

The Signalld should be a string that in addition to the hardware position for the
INSUM device, also specifies a trip or a word.

This is done with the syntaxes C.G.D-T or C.G.D-W, where:
e C,GandD as above,

* T represents Trips and W represents Warnings.
Examples:

* The syntax 2./.204-W means a warning for device #204 connected via
Gateway #1 on CI857 #2.

* The Syntax 2./.204-T means a trip in device #204 connected via Gateway #1
on CI857 #2.

Alarm Generation = Enabled Detailed

The Signalld should be a string that, in addition to the hardware position for the
INSUM device, also specifies the alarm word and bit within the word. This is done
with the syntax C.G.D-X/B, where:

e (C,G,andD as above, and,
e X s the word within NVAlarmRep (preceded by a dash “-”),
* B is the bit within the word.

There are four words with warnings called W0-W3 and four words with trips called
TO-T3. The bits are numbered from 0 to 15. The word and the bit is separated by a
slash ‘/°.

Example:

The syntax 2.1.204-W1/3 means the alarm bit 3 in word W1 in device #204
connected via Gateway #1 on CI857 #2.

280

3BSE035980-600 A

Section 2 Alarm and Event Handling Choose Alarm Handling Method for INSUM Alarms

Choose Alarm Handling Method for INSUM Alarms

This section contains some suggestions about choosing and handling INSUM
alarms. Whether to send alarms to alarm list or not:

* If Alarms should be possible to view, but are not necessary to see in the Alarm
lists:

— Set Generate Alarms = Disabled.
— Do not create any AlarmCond blocks.
J If the INSUM Alarms should be sent to the alarm list:

— Use AlarmCond function blocks. See INSUM Alarms in Alarm Lists
below.

INSUM Alarms in Alarm Lists
Time stamping:
e Iflocal (in the INSUM devices) time stamping should be used:
— Use a system clock in the INSUM system.
— Set Generate Alarms = Enabled, Enabled Trip/Warning, Enabled Detailed
— Use an AlarmCond block with External Time Stamp = TRUE.
» Ifitis sufficient with time stamping in the application in the controller:
— Set Generate Alarms = Disabled
— Use an AlarmCond block with External Time Stamp = FALSE.

— Connect it to the variable with the INSUM device information to be
supervised. The accuracy of this time stamping cannot be better than the
cycle time of the application where the AlarmCond is executed.

Separation of alarms in the alarm list:

» If the timing between different alarms within a device must be possible to see
in the alarm list than it is required to:

— Set Generate Alarms = Enabled Detailed.

— Use one AlarmCond per alarm type.

3BSE035980-600 A 281

System Alarm and Event Generation Section 2 Alarm and Event Handling

» Ifitis sufficient to be able to identify the device than it is possible to:
— Set Generate Alarms = Enabled.
— Use one AlarmCond per INSUM device.

» Ifitis sufficient to be able to identify the first warning and the first trip in a
device than it is possible to:

— Set Generate Alarms = Enabled Trip/Warning
— Use two AlarmCond blocks per INSUM device.
Number of devices:
» If there are a lot of devices needing external time stamping than required for:
— Use two (or one) AlarmCond per INSUM device.
— Set Generate Alarms = Enabled Trip/Warning (or Enabled)
» If there are a few devices that need external time stamping than it is possible to:
— Use one AlarmCond per alarm type.

— Set Generate Alarms = Enabled Detailed

System Alarm and Event Generation

System alarms and system simple events that are generated in a controller are
distributed to OPC alarm and event clients and locally connected printers, according
to the current system configuration.

All system alarms available in a controller can be located by printing all alarms (use
the PrintAlarms function block type and set the parameters to show the alarms you
want to see). They can also be displayed by and interacted with applications, by
means of the function block AttachSystemAlarm (this function block type retrieves
the alarm condition state and some other information for an alarm condition). When
units that are visible in Project Explorer (hardware units or program tasks) generate
system alarms or system simple events, a warning icon is displayed on the
corresponding unit.

282 3BSE035980-600 A

Section 2 Alarm and Event Handling Controller Generated System Alarms and System Simple

System alarms and system simple events are used to draw attention to deviations
from normal system behavior. All system alarms and system simple events can be
sent to the OPC Alarm and Event Clients and even printed to the system log file,
depending on the current system configuration.

Alarm Source name

The Alarm Source name functionality makes it easier to identify units in an alarm
list. Its function can be accessed from the Controller aspect and is used to add an
OPC Source Name aspect to all underlying hardware units and System Alarm and
Event units.

For a hardware unit the name set in the OPC Source Name aspect will be a
combination of the controller name and the unit path e.g. Controller_1-0.4.0.

For a system alarm and event unit, the name set in the OPC Source Name aspect will
be the system alarm and event unit with the IP address replaced by the controller
name.

From the Controller aspect.
1. Select the System Alarm Info tag in the Controller's aspect preview pane.
2. Click the 'Generated System Alarm Info' button.

The text in the Name field (in the OPC Source Name aspect) will be the name
presented in the alarm list.

Controller Generated System Alarms and System Simple Events

Controller generated system alarms and system simple events are defined within the
controller. A list of all defined system alarms and system simple events within an
AC 800M controller can be found in Appendix B, System Alarms and Events.

Filter out system alarms from hardware units

The function is used to reduce the number of alarms generated from hardware units,
as important alarms tend to disappear in a crowd of alarms.

A example is when commissioning the system or a new part of an existing system,
there might be transmitters that are connected and disconnected and the system
generates a lot of underflow, overflow and channel error alarms.

3BSE035980-600 A 283

Controller Generated System Alarms and System Simple Events

Section 2 Alarm and Event

The function is configured on the hardware object on the controller. Select
Controller > Hardware AC 800M >Editor > Settings, then select Filter out
system alarms from hardware units as shown in the Figure 118.

B Hardware - Controller_1. AC BOOM
Editor Edt Yiew Insert Tools Window Help

BEdeE 8L dbB A & W |

Parameter Walue [Type |Unit Min Max | j

Copy unconnected channels |Mone |enum | |

Latched hardware state . |Enabled enum |

System alarms on hardware units |Enabled enum

Simple events on hardware units Enabled enum | |

Filter out system alarms from hardware units | Off j num | |

HwStatus update cycle time Underflow w|dint_ |ms 500 30000 |

Clamp Analog in values Over- and und [bool |

Clamp Analog out values Channel error |bool

IEl\Seuillgs/{ Connections A Unit Status /" el | ﬂ_l
Row 5, Col 1 Hansson, Jon

Figure 118. Filter out system alarms

The parameter has five possible values:

Off: The filter function is shut off. The hardware status generates system alarms and
systems events for all status changes. This is the default setting.

Underflow: Underflow status changes will not generate any alarms.

Over- and underflow: Neither underflow nor overflow status changes generate

alarms.

Channel error: Channel error and IO warning will not generate system alarms or

events.

All: Alarms and events from all the status changes above are suppressed.

ﬂ Even if the setting is set to filter out alarms, the errors and warnings will still be
visible in the hardware tree and the Unit Status tab in the hardware online editors.
The change to the filter is performed in offline mode and downloaded to the

controller to activate the change.

284

3BSE035980-600 A

Section 2 Alarm and Event Handling User Generated System Alarms

If the function is used during commissioning to decrease the number of alarms, it
might be crucial to shut off the filter before entering normal operation.

User Generated System Alarms

User generated system alarms can be defined in your applications via the function
block SystemAlarmCond.

Handling Alarms and Events

When implementing alarm and event handling, it is very important to create a good
system for:

* classifying alarms and events,

* setting the severity of different types of alarms,
* indicating the source of an alarm or event,

* naming alarm conditions.

The most obvious reason for this is that you will be able to create an operator
environment in which the operator will quickly be alerted to various things that
require attention. The operator will also be able to quickly obtain additional
information and decide on the best course of action.

However, alarms and events are also logged, in order to be used for trouble-
shooting, and when analyzing things in order to improve performance of the plant.

This subsection describes:

* How to send data in XML format, see Simple Events on page 286. This is
useful when creating batch records.

* How to handle system alarms and events, see System Alarms and Events on
page 286.

* Internal, remote, and external time stamps (Sequence of Events, SOE),
including time synchronization, see Time Stamps on page 286.

3BSE035980-600 A 285

Simple Events Section 2 Alarm and Event Handling

Simple Events

The DataToSimpleEvent function block is used to send data in XML format, for
example, to record data for batch processes.

For more information on how to use this function block, see online help. For
examples on how to use the DataToSimpleEvent function block, see Alarm
Examples on page 297.

System Alarms and Events

The handling of system alarms and events is to a certain degree configurable. The
function block AttachSystemAlarm can be used to retrieve information on system
alarms and events, such as state, and whether the alarm has been disabled or
acknowledged.

The function block SystemAlarmCond can be used to retrieve system alarms and
events via the application.

Time Stamps

When an alarm or event is created, a time stamp can be added to it, showing the
exact time when the event occurred. There are three types of time stamp:

e Internal Time Stamps, that are created by the controller.

* Remote Time Stamps that are read from external communication partners via
the parameter TransitionTime.

» External Time Stamps that are created by an I/O unit and transferred together
with the event.

The TransitionTime parameter (of type date_and_time) can be used to read a remote
time from a remote partner, via other protocols than MMS. The parameter is read
each time a change is detected in the monitored signal. If it is left unconnected, it
will have no effect.

When adding remote time stamps, it is possible to add any time. However,
settings in the operator interface might filter out alarms and events with times that
are outside the “normal” range (in the future or far back).

286 3BSE035980-600 A

Section 2 Alarm and Event Handling Time Stamps

Internal time stamps simply show when the execution cycle in which the alarm was
created started. External and remote time stamps show the actual time at which the
alarm condition occurred in the external device or partner. All time stamps have a
resolution of 1 ms; however, it is the interval time of the task where the alarm
function block or module runs that determines the accuracy of the internal time
stamps. All alarm function blocks and modules in the same task are given the same
time stamp, if activated concurrently.

This is the point of using external and remote time stamps. Internal time stamps can
never be more accurate than the execution time of the task allows for. With external
or remote time stamps, the accuracy of the time-stamping mechanism in the external
or remote device (for example, an S800 I/O unit) sets the limit, something which
could seriously improve the accuracy of the time given in entries with external or
remote time stamps.

If external time stamps are to be used, the external time stamp parameter
(ExtTimeStamp) has to be set to True. When using external time stamps, there is also
a Signalld parameter that is used to indicate the source of the external alarm or
event.

External time stamps can only be created by external units with Sequence-of-
@ Event (SOE) support.

All time stamps use UTC (Coordinated Universal Time).

3BSE035980-600 A 287

Time Stamps

Section 2 Alarm and Event Handling

Clock Synchronization

For time stamps to be useful, the whole system must use the same time, that is, the
time must be synchronized. See also Clock Synchronization in the AC 800M
Communication Protocols (3BSE035982%).

Depending on the type of controller, clock synchronization is possible by four
different protocols: CNCP, SNTP, MB 300 TS, and MMS Time Service. Clock
synchronization is set up in the controller hardware editor.

It is important to understand the difference between accuracy and resolution when
calculating how much a time stamp may deviate from the true system time:

* Resolution is the number of decimals that are used to write the time. If the time
is given as, for example, 2004-02-19 19:43:22:633, the resolution might
be 1 ms (but could also be, for example, 0.5 ms).

* Accuracy is a measure of how accurate a time stamp is, that is, how much it
may deviate from the true system time. If the accuracy is 1 ms, then
2004-02-19 19:43:22:633 actually means any time between
2004-02-19 19:43:22:632 and 2004-02-19 19:43:22:634.

For a more detailed, conceptual description of time synchronization, see the AC
800M Communication Protocols (3BSE035982%*) and the System 800xA Network
Configuration (3BSE034463%*). For information on how to set up time
synchronization or a controller, see online help for the processor unit (PM unit) in
question.

It is also important to understand that the accuracy deteriorates if a time stamp is
created in a unit that is supplied with the time from a controller, via ModuleBus.

The possible difference between the time stamps of two events that occurred at
exactly the same time, but in two different units in two different controllers, is the
sum of the accuracy of time synchronization in the network and two times the
accuracy of the ModuleBus time synchronization.

This means that the difference between external time stamps can be far greater than
the accuracy of time synchronization between controllers.

The highest accuracy is achieved by using the CNCP protocol, with an AC 800M
controller as master.

288

3BSE035980-600 A

Section 2 Alarm and Event Handling Alarm and Event Communication

Units with SOE require time synchronization throughout the system, see Clock
Synchronization on page 288. The time used by units on ModuleBus is based on
the synchronized time received by the controller, but the accuracy is somewhat
lower. For information on the accuracy of SOE time stamps, see S800 I/O
documentation.

Alarm and Event Communication

Alarm and event information is communicated throughout the control network via
OPC servers, that is, a number of OPC Server for AC 800M. When the state of an
alarm condition changes, an event notification is sent to all subscribing OPC
servers, which then forward these notifications to their clients. Changes in alarms in
the OPC server are also forwarded to its clients. Clients can be third party OPC
clients, or an 800xA operator station.

For detailed information on how to configure OPC Server for AC 800M, refer to
the AC 800M OPC Server (3BSE035983%*) .

Subscriptions

An OPC server subscribes to event notifications from a control system. Each
controller compiles an internal list of all servers interested in various events.
Condition-related events are generated when alarm conditions change their state.
Simple events can be generated, for example, by the start of a motor. When an event
occurs, the control system sends event notifications to all servers on the subscription
list.

Configuration of OPC AE Communication — Overview

The whole system for transferring alarms and events, that is, controllers, OPC
servers, and OPC clients, must be configured so that there are no disturbances in the
alarm and event traffic.

There are several basic rules regarding system configuration:

* A control system can send data or event notifications to one or two subscribing
OPC servers.

3BSE035980-600 A 289

Configuration of OPC AE Communication — Overview

Section 2 Alarm and Event Handling

A maximum of seven OPC clients can subscribe to data or event notifications
from the same OPC server.

A maximum of four Ethernet links (two redundant) are supported via Ethernet
cards.

A maximum of four Point-to-Point Protocols (PPP) are supported via serial
cards.

The OPC server must be configured to recognize the control systems it is to
communicate with. The OPC client must be configured to recognize the OPC
server(s) it is to communicate with. See Figure 119.

OPC Client 1 OPC Client 2 OPC Client 3
Panel 800 OPC Server 1 OPC Server 2
Control Systems: Control Systems: Subscr. list: Control Systems: Subscr. list:
Control System 1 Control System 1 OPC client 1 Control System 1 OPC client 3
Control System 2 Control System 2 OPC client 2 Control System 2

Control System 3
Control System 4

Control System 1

Control System 2

Control System 3| | Control System 4

Subscr. list: Subscr. list:
OPC server 1 OPC server 1
OPC server 2 OPC server 2

Subscr. list:
OPC server 2

Subscr. list:
OPC server 2

Figure 119. Example of a control network configuration.

Information about how to configure individual OPC servers is found in the
AC 800M OPC Server (3BSE035983%*), and in the online help, which can be opened
from the OPC server panel.

290

3BSE035980-600 A

Section 2 Alarm and Event Handling Buffer Queues

Buffer Queues

For each connected OPC Alarm and Event client, there is an OPC Alarm and Event
Server queue. All data passing the OPC Server, such as event notifications, will also
pass this queue. Figure 120 shows aa control system buffer configuration example,
where OPC clients subscribe to alarms and events from different OPC Servers.
When a buffer is full, a system simple event is sent upwards to the 800xA System.
All buffers are created in accordance with OPC server and CPU settings. Also, see
System Diagnostics on page 316.

Third party client
Connectivity Server Connectivity Server
1 3

opc % Buffers % orG Buffer

Serveri Server2
Buffer Buffer

A

N T
\

Buffer Buffers + Printer
w Buffer Buff
urrer

Low level

% event Controller 2
Buffer

* Sequence of Events
Controller 1 (INSUM)

Figure 120. Example of buffer configuration. When a buffer is full, a system simple
event is sent upward to the 800xA system and the third party client. In Controller 1,
there is also a low level event buffer receiving events from an external device (in the
example, an INSUM device).

3BSE035980-600 A 291

Buffer Configuration

Section 2 Alarm and Event Handling

Buffer Configuration

Alarm and event handling requires a number of buffers. The memory for these
buffers must be allocated in the controllers. These settings have to be made in the

Settings tab for each controller CPU.

Table 22 describes the parameters in the Settings tab that need to be configured for
the buffer. See also System Diagnostics on page 316.

These settings affect the Available memory. For more information regarding
Available memory, refer to the System 800xA System Guide Technical Data and

Configuration (3BSE041434*) manual.

For controller types with limited memory, the settings for the buffer configuration
should be carefully chosen or else the memory becomes full.

Table 22. Memory planning for buffer configuration

Parameter

Comment

AE Local printer event queue size

AE Max number of local printer event
queues

AE Event subscription queue size

Each position allocates approximately 300
bytes of memory. The total memory need
for local printers is:

300 * AE Local printer event queue size *
AE Max number of local printer event
queues

The maximum number of event queues in
the controller

Each position allocates approximately 300
bytes of memory. Total memory need for
subscribing OPC Servers are:

300 * AE Event subscription queue size *
AE Max number of event subscriptions

AE Max number of event subscriptions Number of subscribing OPC Servers

292

3BSE035980-600 A

Section 2 Alarm and Event Handling

Local Printers

Table 22. Memory planning for buffer configuration (Continued)

Parameter

AE Buffer size of low level event

AE Max no of Name Value items

AE Max percent of log strings

Comment

Each position allocates 72 bytes of
memory. Total memory need for
Sequence of Events are:

72 * AE Buffer size of low level event
Set this setting to 2 if Sequence of Events
is not used

The maximum number of XML tagged
events

The percentage of Name Value items that
are strings. Used to allocate memory for
Name Value item strings.

Local Printers

A local printer can be connected to the serial port of a controller, and print out event

lists and/or alarm lists as needed.

AC 800M

E Buffer -
= p Printer

Figure 121. Example of a controller and local printer configuration.

There can be only one local alarm/event printer connected to each controller.
Additional printers are invalid. There is limited data flow support for alarm/event
printers connected to controllers. Alarms and events that occur when the printer is
offline may not be printed when the printer goes online again. This applies to all
printers with direct connection to a controller.

Print Format

The print format for alarm conditions and events is governed by a special format

syntax.

The system supports the 8-bit ASCII character set (according to Windows). This
means that the serial and parallel printers must support the 8-bit character set.

3BSE035980-600 A

293

Print Format

Section 2 Alarm and Event Handling

The abbreviations used in these format strings are given in Table 23. The character
length of each field is given within parentheses..

Table 23. Abbreviations in format strings

Abbreviation Explanatiorr)lac; rt::t :::ntifieation
Ti Time stamp (MM-DD-HH:MI:SS)
Sr Source name (maximum 30)
Co Condition name (maximum 15)
Me Message (maximum 70)
Cs Condition state text (maximum 20)
Tt Transition type text (maximum 20)
S Severity (4)
Class(4)

The fields may be in any order.

Ti, Sr, Co, Me, Cs, and Tt have user-defined dynamic lengths. If the length of a
string is defined as longer than a presentation function that is already set, the
presentation is reduced accordingly

The text for the condition state originates from project constants such as
cAlarmCondStatetext.Onl1, cAlarmCondStatetext.Off1, and so on.

A maximum of 132 characters can be printed for each alarm/event.

Globally Defined Print Formats

Global print formats are defined in the project constants, which are categorized
based on alarm and event conditions or transitions:

J For Alarm Conditions

— cPrintAlarmPres. AlarmCondFormat

— cPrintAlarmPres. TimeFormat

294

3BSE035980-600 A

Section 2 Alarm and Event Handling Sending an Alarm to the Application

— cPrintAlarmPres.FooterFormat
* For Events
— cPrintEventPres.CondEventFormat
— cPrintEventPres.SmpEventFormat
— cPrintEventPres. TimeFormat
* For Alarm Condition State Texts
— cAlarmCondStateText.Undefined
— cAlarmCondStateText.Onl
— cAlarmCondStateText.Off1
— cAlarmCondStateText.Acked
— cAlarmCondStateText.Disabled
— cAlarmCondStateText.Idle
— cAlarmCondStateText. Autodisabled
* For Event Transition Texts
— cEventTransitionText.Undefined
— cEventTransitionText.Onl
— cEventTransitionText.Off1
— cEventTransitionText.Ack
— cEventTransitionText.Disable
— cEventTransitionText.Enable

— cEventTransitionText.Autodisable

Sending an Alarm to the Application

Instead of sending your alarms to a local printer you can choose to only redirect the
alarm to the application. The function block PrintEvents contain two parameters; the
first parameter Eventltem catch the values (Source Name, Condition name, Time
stamp, Severity etc.) and the second parameter EventltemText format these values

3BSE035980-600 A 295

Third Party OPC Clients Section 2 Alarm and Event Handling

V

as if they was send to a printer and bring it to the application as well. Hence, these
values can then be sent and processed by your local code.

However, sending an alarm only to the application requires that you do not connect
the Channel parameter (leaving the Parameter field empty).

By sending an alarm to the application you can then redirect this information to
your cell phone. Every time an incoming alarm has a severity higher than 700,
you should be notified with a SMS.

Third Party OPC Clients

Normally, all OPC traffic is kept within the 800xA system, which integrates all
alarm and event function into a single system. However, it is still possible to connect
third party OPC clients to the OPC servers, since OPC Server for AC 800M
supports the OPC standard. In this case, it is important to know that there are
extensions and limitations in relation to the standard. For further information, refer
to the AC 800M OPC Server (3BSE035983%).

Translation — NLS Handling of Strings

Translation of alarm and event strings requires that the strings to be translated
contain control characters indicating that they should be translated, and that they
follow the National Language Support (NLS) syntax.

The operator environment supports NLS handling and this is set up for the operator
workplace. When the operator environment discovers a string that uses NLS syntax,
it will automatically translate this string to the language that has been set, provided
that there is a corresponding string in that language and that the Alarm and Event
Translator aspects has been set up correctly.

Translation supports the UNICODE standard and is triggered by two pipe characters
(I). Parameters can be used inside the string. The position of each parameter is
indicated inside brackets, {1} {2} etc. Parameter values are given at the end of the
string, separated by backslashes (\).

A string prepared for translation might look as in the below example:
T220 | |PR1_ACOF_sup_time_changed_to_{1l}ms_for
motor_{2}\5\M101\

296

3BSE035980-600 A

Section 2 Alarm and Event Handling Alarm Examples

This would result in the following string if no translation is applied:
T220 ACOF supervision time changed to 5ms for motor M101

For more information on NLS syntax, refer to online help for alarm and event
handling.

The following strings have NLS support:

* The condition name (parameter CondName). Condition names cannot be
longer than 15 characters.

* Alarm/event messages (parameter Message).

ﬂ It is also possible to translate the source name (parameter SrcName). However,
due to the fact that this is normally handled by other functions in the operator
interface, this is not recommended.

When printing alarms and events, all NLS control characters are removed.

NLS handling must be setup in the operator workplace. For instructions on how
@ to enter translations and select language, refer to system and operator workplace
documentation.

Alarm Examples

The following subsection contains a number of examples designed to help you
understand how alarm and event handling works and how to use the types in the
Alarm and Event library.

* AlarmSimple_M example shows how function blocks (AlarmCond,
SimpleEventDetector), and control modules (AlarmCondM) from the Alarm
and Event library can be used, and how different parameters affect the
condition state. See AlarmSimple_M Example on page 298.

* The AlarmSimple_M example can also be used to study the aspects that are
generated by alarm conditions. See Alarm and Event Aspect Example
(AlarmSimple_M) on page 303.

e The alarm owner concept is illustrated by a couple of examples. See Alarm
Owner Examples on page 304.

* How to set up functions for inhibiting and disabling alarms is shown in Inhibit
Example on page 310.

3BSE035980-600 A 297

AlarmSimple_M Example Section 2 Alarm and Event Handling

* There are three examples of how to use simple event data. See Simple Event
Examples on page 312.

AlarmSimple_M Example

The example project AlarmSimple_M is located in the Example folder (under
Program Files in Windows) and is installed with the system. Run AlarmSimple_M
simultaneously when studying this section.

The example file has the suffix .afw. Browse to the Example folder inside the

ﬂ Import/Export function in Plant Explorer, and import the example project to the
Control Structure. See the System 800xA Control AC 800M Getting Started
(3BSE041880%).

The example contains:

* A motor, named M101, with two supervised out signals: SwitchGearError and
M1010OverLoad.

— SwitchGearError has severity 50 and belongs to class 15. This signal is
connected to an AlarmCond function block named SwitchGearAlarm.

— MI1010verLoad has severity 100 and belongs to class 50. This signal is
connected to an SimpleEventDetector function block named
OverLoadEvent.

J Two tanks, named Tank11 and Tank12, both with supervision of the tank level.
Each tank contains two alarm conditions, High and Low, which are based on
the AlarmCondM control module type.

298 3BSE035980-600 A

Section 2 Alarm and Event Handling AlarmSimple_M Example

Figure 122 shows a partial view of the two tanks, Tank11 and Tank12. Figure 123
shows the Project Explorer view of the defined types and control modules.
Project Explorer view

Tank11 : TankType

High : AlarmCondM

Low : AlarmCondM

Tank12 : TankType

High : AlarmCondM

Low : AlarmCondM

Figure 122. Project Explorer view

This example uses control modules, but function blocks might as well be used.

N
= Applications
- alarmsimple_m - (Controller _1M.Mormal)
@ Data Types
I} Function Black Types
+-42F Control Module Types
--4FE Control Modules
—-4PE Tank1l TankType
FFE High AlarmEventLib:alarmCondm
FE Low AlarmEventLib: AlarmCondm
—-JPE Tank1? TankType
FFE High AlarmEventLib:alarmCondm
FE Low AlarmEventLib: AlarmCondm

+ i Prograrms
+- [] Contrallers
Figure 123. Tankl 1 and Tankli?2 in Project Explorer.

Once you have imported the example, you can set it in test mode and study how
different parameters affect the behavior of an alarm condition and how simple

events are generated:

3BSE035980-600 A 299

AlarmSimple_M Example Section 2 Alarm and Event Handling

Open the AlarmSimple_M example project.
Select Tools > Test Mode to enter test mode.

Select View > Expand All to expand the project tree. The following window
will be displayed.

Under Applications, alarmsimple_m and Programs, double-click Program?2.
The online editor is displayed. The two function blocks, one for each
supervised signal, are shown under the Function Blocks tab in Figure 124.

MName Function Block TypeTask Connection |Description J
— SwitchGearAl |AlarmCond
L~ OverLoadEver SimpleEventDetecto

|+ [\ variables » Function Blocks el | ﬂ_‘

SwitchGearhlarm(Signal ; =EwitchGearError].

COverloadEvent (Signal =H1010verLoad|.

Fy

SrcHame : = H101SrcHane| MotorlOlHM],
Hessage : =SwitchGearDesc[Motor H101 ho . |,

Severity : =G50,

Cla==: =15,

AckCond : =BwitchGeardck].

DisCond : =BwitchGearDis].

EnCond : =,

CondStates= >SwitchGearState) S

Srclame : = M1015rcHane] HotorlOlM],
Message | =OwerloadDesc|[Motor M101 h. . |,

Sewerity : =100,
Class: =50) ;

" Code / K o[

LM

Figure 124. Part of Online editor for Program?2.

Try changing the below variables (see Table 24) under the Variables tab or in
the code pane, to generate and acknowledge the alarm, or to generate the
simple event. Note that in this example, not all parameters are used. Function
blocks can be viewed in their online editor. The variable SwitchGearState
shows the current alarm state.

300

3BSE035980-600 A

Section 2 Alarm and Event Handling

AlarmSimple_M Example

Table 24. Variables used to generate alarm and events.

SwitchGearError Supervised signal. Set/reset alarm condition here.
M1010verLoad Supervised signal. Set/reset simple event here.
SwitchGearAck Acknowledge alarm here.

SwitchGearDis Disable alarm here.

SwitchGearEn Enable alarm here.

6. Double-click alarmsimple_m under Applications to display the corresponding
online editor (Figure 125). Here, you can study variables connected to control
module parameters.

Mame Current %alue Data Type Attributes Initial %alue

— Tank11Mame [Tank11 string[30] retain Tank11'

— Tank11Desc |Tank 11- oil containe|string[B0] retain Tank 11- oil

— Tank1Z2Mame |Tank12 string[30] retain Tank12

— Tank12Desc |Tank12- water conta|string[B0] retain Tank12- wats

Global Variables /4 Variables /7 [[«| |
Figure 125. Par of Online editor for alarmsimple_m.

3BSE035980-600 A 301

AlarmSimple_M Example

Section 2 Alarm and Event Handling

7. Under Applications, alarmsimple_m, and Control Modules, double-click
Tank11 or Tank12. The corresponding online editor is displayed (Figure 126).

MName Current Walue Data Type Attributes Initial VaJ
— HighSignal |false bool retain
— HighDescr |High level an theTan |string[B0] retain
— HighAckCond [false bool retain false
— HighDisCond |false bool retain false
— HighEnCond |false bool retain false
— HighCondStat |2 dint retain
— HighLevel High level on the string[30] retain High lewve
— LowSignal |falze boaol retain
— LowDescr Laow level on theTant|string[B0] retain
— LowhAckCond |falze bool retain falze
— LowDisCond |falze bool retain falze
— LowEnCond |false bool retain false
— LowCondState)2 dint retain
— Lowlevel Low level an the string[30] retain Low leve
[+ [\ Parameters » Variables 4 Edetnal Variables 3 [|«| | ﬂ_‘
HighDescr[High level o.. |:=Highlevel[High level o. . . |+ Description -
LowDescr[Low level on. . . | =Lowlevel[low level on. . . |+ DescriptiDnE
| [\Code _Start_Code <] | L‘_‘
MLIM

Figure 126. Part of Online editor for Tankli 1.

8. Try to generate, acknowledge, or disable/enable alarm conditions by changing
the values of the parameters. Note how the condition state changes
(HighCondState and LowCondState).

When ready, exit test mode and close all windows.

302 3BSE035980-600 A

Section 2 Alarm and Event Handling Alarm and Event Aspect Example (AlarmSimple_M)

Alarm and Event Aspect Example (AlarmSimple_M)

The Tank objects in the AlarmSimple_M example project are aspects objects. The
alarm conditions are collected in one aspect of the tank object. The reason for this is
that the control module type AlarmCondM has a predefined attribute Alarm. All
objects based on types with the Alarm attribute set are shown in the Control Alarm
Event aspect of the parent object. The condition name and instance name of an
alarm condition module are identical, unless the CondName parameter has been
used to set another condition name.

Some Tank11 aspects are shown in Figure 127, which shows part of the Control
Structure in Plant Explorer. The Control Alarm Event aspect is created whenever the
object has the Alarm Owner attribute set to True. The AlarmList aspect has been
added. This aspect has no connection with Control Builder.

Control structure in Plant Explorer Control Module

Tank1 1j Control Alarm Event

Tank12

AlarmEvent AlarmList

Figure 127. Aspect Object Tankl 1 in Plant Explorer, showing some aspects.

Condition/Instance names presented in the Control Alarm Event aspect are shown in
Figure 128.

3BSE035980-600 A 303

Alarm Owner Examples

Section 2 Alarm and Event Handling

-] System : AENSystem - Workplace : Plant Explorer Workplace

B, & Mo Filter

OE Conkrol Structure

[~

=5l Rook, Daormain
=] @ Control Netwaork, Contral Metwark,
= ﬁ AlarmSirple_M, Conkral Project
=] Applications, Application Group
= alarmsimple_rm, Contral Applicat
—-§PE Control Modules, Contral M
gFE Tankl1, TankType
gFE Tanklz, TankType
+ i Programs, Prograrm Group
+ Controllers, Contraller Group

[+ E Libraries, Library References

Alarm Conditions l.ﬂ.bout]

Low

Hmo| 23
Aspects of "Tank1l' | Cesc... | Inherited |
E= alarm List This ... True
‘@ Contral Alarm Event Aspe,., True |
FFEControl Module Cont... False
EControl Properties Cont... False
FE + | Tanki1:Contral Alarm Event & 4a

Figure 128. Example project in the Plant Explorer, with alarm conditions shown in

the Control Alarm Event aspect.

Alarm Owner Examples

The following examples show how the alarm owner concept can be used to control
which object is considered to be the source of an alarm or event.

Figure 129 shows a library called PipeLib:

PipeLib contains two types, MyMotor_type and MyPipe_type.

condition control modules (of the type AlarmCondM).

MyMotor_type contains an alarm control module (of the type AlarmCondM).
MyPipe_type contains two motors of the type MyMotor_type, and two alarm

3BSE035980-600 A

Section 2 Alarm and Event Handling

Alarm Owner Examples

Object Type Structure
PipeLib
AO{ IMyMotor_type

| |FeedbackError (AlarmCondM)

AO L[MyPipe_type

ao —%I\g)toﬂo (MyMotor_type)
FeedbackError (AlarmCondM)

ao 4%!\|/I:|otor20 (MyMotor_type)
FeedbackError (AlarmCondM)

—_]HiLevelAlarm (AlarmCondM)

—]LowLevelAlarm (AlarmCondM)

Figure 129. PipeLib. AO=Alarm Owner (setting in type), ao=alarm owner (setting

is inherited from type).

We use the PipeLib library and two single control modules (SM1 and SM2) to
create a structure containing three tanks of the type MyPipe_type, see Figure 130.
We set the Alarm Owner attribute to False for SM1, but to True for SM2.

3BSE035980-600 A

305

Alarm Owner Examples Section 2 Alarm and Event Handling

Control Structure

AO |Application

-89 1pipe100 (MyPipe_type)
Ql%l\(ljotoﬂ 0 (MyMotor_type)
FeedbackError (AlarmCondM)

29 M\iotor20 (MyMotor_type)
%FeedbackError (AlarmCondM)
— |HiLevelAlarm (AlarmCondM)

—]LowLevelAlarm (AlarmCondM)

.4%/”

Pipe200 (MyPipe_type)

29\ otor10 (MyMotor_type)
ﬂDFeedbackError (AlarmCondM)
29 MIMotor20 (MyMotor_type)
ﬂleredbackError (AlarmCondM)
—_]HiLevelAlarm (AlarmCondM)

—]LowLevelAlarm (AlarmCondM)

AO SM2

4% Pipe300 (MyPipe_type)

{20 Motor10 (MyMotor_type)
ﬂDFeedbackError (AlarmCondM)
2 Motor20 (MyMotor_type)
ﬂDFeedbackError (AlarmCondM)
—_]HiLevelAlarm (AlarmCondM)
—{ JLowLevelAlarm (AlarmCondM)

Figure 130. Three pipes with different alarm owner conditions.

306 3BSE035980-600 A

Section 2 Alarm and Event Handling Alarm Owner Examples

What happens if an alarm is created inside this structure? Which object will be the
alarm owner? The answer is that the alarm ownership will depend on the existence
of an unbroken chain of alarm owners:

For Pipe100 and Pipe300, the HiLevel and LowLevel alarms will be associated
with the pipe, since there is an unbroken chain of alarm owners from the tanks,
up to the application.

For Pipe200, the HiLevel and LowLevel alarms will be associated with the
application, since there is no unbroken chain of alarm owners leading from the
application down to the pipe.

For Pipe100 and Pipe300, FeedbackError alarms from the motors will be
associated with the motor in question, since there is an unbroken chain of alarm
owners from each motor, up to the application.

For Pipe200, FeedbackError alarms from the motors will be associated with the
application, since there is no unbroken chain of alarm owners leading from the
application down to the motors.

It is easy to manipulate the alarm ownership. The alarm owner chain can always
be broken by inserting a “blind object” which is not an alarm owner. For
example, inserting such an object between Pipe100 and Motor10 in the above
example would cause FeedbackError from Pipel00 to be the owner of
FeedbackError alarms from Motor10, while Motor20 would still be the owner of
FeedbackError alarms from Motor20. See Figure 131.

The situation where all alarms from the SM1 single module have the application
as alarm owner is of course not desirable. It is simply included to illustrate what
happens when the alarm owner chain is broken.

3BSE035980-600 A 307

Condition State Example Section 2 Alarm and Event Handling

AO |Application

ao

Pipe100 (MyPipe_type)
BlindObject (Control Module_type)

49\ otor10 (MyMotor_type)
_ FeedbackError (AlarmCondM)
Breaks the chain of

alarm owners for Motor10 29 M otor20 (MyMotor_type)
FeedbackError (AlarmCondM)

—1 JHiLevelAlarm (AlarmCondM)
—]LowLevelAlarm (AlarmCondM)

Figure 131. Inserting a “blind object” to break the alarm owner chain.

Condition State Example

The following example shows how to use the condition state parameter (CondState)
to control a pump.

308 3BSE035980-600 A

Section 2 Alarm and Event Handling Condition State Example

@EMP

energize
Start | AlarmCond
Signal
Stop time__| CondState >

2 —‘B

Blocking
Figure 132. Manipulating the condition state using 1/0.

Figure 132 shows two alternative ways of stopping a pump when the temperature is
too high. The TEMP signal goes high when the temperature is too high.

In alternative A, the TEMP signal is simply used to stop the pump (using the
blocking function, note that the TEMP input is inverted). There is no way to disable
this alarm. The pump is blocked as long as TEMP is high.

Alternative B uses an AlarmCond function block, which makes it possible to wait
for an action from the operator, before unblocking the pump. The blocking signal to
the pump does not go high until CondState > 2, that is, the alarm is enabled and not
idle (for a list of possible states, see Status Information on page 266). Once it has
gone high, it does not go low until Condstate => 1, that is, the alarm is disabled or
has returned to its idle state (this means that the alarm must be acknowledged by the
operator and TEMP must go low before the pump is unblocked, as long as
acknowledgement rule 1 is used).

3BSE035980-600 A 309

Inhibit Example Section 2 Alarm and Event Handling

Alternative B also makes it possible to disable the blocking function by simply
disabling the alarm condition.

This example has been simplified to illustrate a principle. In reality, it would not

@ be desirable to have a motor start when an alarm is acknowledged. Instead, the
operator would acknowledge the alarm, and then start the motor with a separate
command.

Inhibit Example

The below example shows how to implement the inhibit function for a motor M103
(see Figure 133):

* Anoil pressure sensor, P103, is used to stop the motor M 103 if the oil pressure
is too low.

* A SignallnReal object is used to supervise the sensor and a MotorUni is used to
control the motor.

e The LTLLAct output from SignallnReal is connected to the PriorityCmd01 in
MotorUni. This means that the motor will be forced to stop when the oil
pressure is below the LL level. LTLLStat may be connected to a warning lamp
in a panel.

During start up of the equipment it is known that the oil pressure will be below the
limit, but it must be possible to start the motor. Therefore, the application logic will
set the EnableLL parameter in SignallnReal to False during start-up. This means
that LTLLAct will not be set, that is, the motor will not be stopped and no alarm is
sent to the alarm list as long as the motor is starting up. LTLLStat will not be set and
the lamp will not be lit.

Suppose the operator, maybe for testing, wants to run the equipment at an oil
pressure below the LL level. He could then inhibit SignallnReal from the faceplate.
The motor will still run during the test, but an alarm will be sent to the alarm list.
LTLLStat will be set and the lamp will be lit.

310 3BSE035980-600 A

Section 2 Alarm and Event Handling Inhibit Example

-‘M103

Figure 133. Example of how to implement inhibition of an alarm.

3BSE035980-600 A 311

Simple Event Examples Section 2 Alarm and Event Handling

Simple Event Examples

The below examples show how to use the DataToSimpleEvent function block to
send simple event data, for example for a batch process, where data records should
be generated for the process at a number of points. There are three examples:

* Simple Data on page 312,
* Structured Data — Example 1 on page 314,
* Structured Data — Example 2 on page 314.

Simple Data

Presume that an engineer wants to record three parameters in the process:
a temperature, a pressure and a stirring rate. Consequently, the engineer names
them:

varTEMP = “TEMP”
varPRESS = “PRESS”
varSTRAT = “STRAT”

These are the names the user wants to see on the screen when the recording is done,
but these names are not the same as the variable names. Instead, the names are
coupled to the extensible parameters in the Name field:

Name[1] = varTEMP
Name[2] = varPRESS
Name[3] = varSTRAT

During execution TEMP=300.2, PRESS=23.1, and STRAT=10. Temp and press are
real values (real) and STRAT is an integer, which causes no problem since Values is
of AnyType.

312 3BSE035980-600 A

Section 2 Alarm and Event Handling Simple Event Examples

NestingLevel “1” is chosen and this is how it could look in Control Builder:

varTEMP = “TEMP”

tempValue := 300.2;

pressValue := 23.1;

My Log (SrcName := SrcName,
Message := Message,
Class := Class,
EventCode := thisNbrEvent
RecipePath := myLongPath,
Status => Status,
Name[l] := varTEMP,
Value[l] := tempValue,
NestingLevel[1l] := 1,
Name[2] := varPRESS,
Value[2] := pressValue,
NestingLevel[2] := 1,
Name[3] := varSTRAT,
Value[3] := stratValue,
NestingLevel[3] := 1);

In OPC Server for AC 800M, this will be encoded into an XML string.

<DATA_EV_LOG>
<TEMP Value="300.2" type="real”/>
<PRESS Value="23.1" type="real”/>
<STRAT Value="10" type="int”/>
</DATA_EV_LOG>

3BSE035980-600 A 313

Simple Event Examples Section 2 Alarm and Event Handling

Structured Data — Example 1

An engineer wants to record data that belong together, that is, he or she wants to
create a structure named PHYS_DATA containing physical properties of an object,
in this case a tank.

The structure (PHYS_DATA) has no value in itself and the NestingLevel=1 when
PHYS_DATA is coupled to the first extensible parameter.

The next step is to give PHYS_DATA properties, and three components are created
in the following three extensible parameters:

height=4.1
length=3.0
depth=1.0

Since the parameters above are physical properties of PHYS_DATA, they are
assigned with NestingLevel=2. They are all floats.

In this case, the XML data in OPC Server for AC 800M will look like:

<DATA_EV_LOG>
<PHYS_DATA Value="" type="">
<height Value="4.1" type="real”/>
<depth Value="3.0" type="real”/>
<length Value="1.0" type="real”/>
</PHYS_DATA>
</DATA_EV_LOG>

Structured Data — Example 2

In this example, the engineer is in the same situation as in the previous example, but
now he or she also wants to record the recipe parameters in one of the batch objects.
The same procedure as in Example 1 is performed but a new parameter
“RecipePar” is added and NestingLevel=-1 is set. With NestingLevel=-1 it is
indicated that the recipe parameters to be fetched are placed on NestingLevel=1,
since the height, depth, and length values in the previous example were to be placed
on NestingLevel=2.

314

3BSE035980-600 A

Section 2 Alarm and Event Handling

Simple Event Examples

The recipe parameters are fetched in the controller and are:

heat=3.4
temp=349.4

heating=true

From a Control Builder M view, this would look like:

structName := “PHYS_DATA”;

varHeight := “height”;

heightvalue := 4.1;

varRecipe := “RecipePar”

LogThis (SrcName := SrcName,
Message := Message,
Severity := Severity,
Class := Class,
EventCode := thisNbrEvent,
RecipePath := myLongPath,
Status => Status,
Name[l] := structName,
Value[l] := EmptyValue,
NestingLevel[1l] := 1,
Name[2] := varHeight,
Value[2] := heightValue,
NestingLevel[2] := 2,
Name[3] := wvarDepth,
Value[3] := depthvValue,
NestingLevel[3] := 2,
Name[4] := varLength,
Value[4] := lengthValue,
NestingLevel[4] := 2,
Name[5] := varRecipe,
Value[5] := EmptyValue,
NestingLevel [5] := -1);

3BSE035980-600 A

315

Alarm and Event Functions Section 2 Alarm and Event Handling

The XML data will look as below. The last three parameters are fetched from a
Batch Object.

<DATA_EV_LOG>
<PHYS_DATA Value="" type="">
<height Value="4.1" type="real”/>
<depth Value="3.0" type="real”/>
<length Value="1.0" type="real”/>
</PHYS_DATA>
<RecipePar Value="" type””/>
<heat Value="3.4" type="real”/>
<temp Value="349.4" type="real”/>
<heating Value="true” type="bool”/>
</DATA_EV_LOG>

Alarm and Event Functions

There are a number of functions that can be used to analyze and supervise alarm and
event handling:

* The function block SystemDiagnostics contains a part that displays alarm and
event related information. See System Diagnostics on page 316.

e For those who need detailed information about the alarm and event state
machine, there is a collection of state diagrams. See Acknowledgement Rules —
State Diagrams on page 317.

System Diagnostics

When in online mode, it is possible to view information regarding memory via the
interaction window of the function block SystemDiagnostics (located in the Basic
library).

The advanced mode of the interaction window displays system memory
information.

316

3BSE035980-600 A

Section 2 Alarm and Event Handling Acknowledgement Rules — State Diagrams

There is also an Alarm and Event button which, if clicked, displays information
regarding:

. Used amount of buffer size,
* The number of:
a. alarms in the controller,
b. different condition names in the controller,
c. local printer queues,
d. subscribing OPC Servers.
* The IP-addresses of the subscribing OPC Servers.

Acknowledgement Rules — State Diagrams

The control system handles four different condition state diagrams according to five
different acknowledgement rules.

Acknowledgement Rule 1

Rule number 1 uses three different state diagrams.

State 2
Inactive, Acked

State 4
Active, Acked

State 5
Active, Unacked

Figure 134. State diagram for enabled alarm conditions with AckRule 1, part 1.

In Figure 134 above, the alarm is in its normal state when it becomes active. It is
then acknowledged, and on becoming inactive it returns to its normal state.

3BSE035980-600 A 317

Acknowledgement Rules — State Diagrams Section 2 Alarm and Event Handling

State 2
Inactive, Acked

State 3
Inactive, Unacked

State 5
Active, Unacked

Figure 135. State diagram for enabled alarm conditions with AckRule 1, part 2.

In Figure 135 above, the alarm is in its normal state when the alarm becomes active.
It then becomes inactive, and on being acknowledged returns to its normal state.

State 2
Inactive, Acked

State 5
Active, Unacked

State 3
Inactive, Unacked

State 6
Autodisabled

Figure 136. State diagram for enabled alarm conditions with AckRule 1, part 3.

318 3BSE035980-600 A

Section 2 Alarm and Event Handling Acknowledgement Rules — State Diagrams

The third instance occurs when an alarm switches between active and inactive
without being acknowledged. In Figure 136, the alarm starts in its normal state and
becomes active. It then switches twice between active and inactive without being
acknowledged. When the alarm becomes inactive a third time it is automatically
placed in the Auto-disabled state. Whether the alarm is active or inactive in this state
is of no significance. When acknowledged the alarm returns to its normal state.

The default setting for auto-disable is three times. This can be changed through

@ the CPU setting AE Limit Auto Disable. If it is set to 0, there will be no auto-
disable function. There is also a system variable called AlarmAutoDisableLimit
which affects all process alarms with acknowledgement rule number 1
(AckRule=1).

Acknowledgement Rule 2

State 2
Inactive, Acked

State 4
Active, Acked

Figure 137. State diagram for enabled alarm conditions with AckRule 2.

Alarm conditions with AckRule 2 does not require acknowledgement and therefore
follow a different state diagram. When the alarm becomes active it switches to an
active and acknowledged state. On becoming inactive it returns to its normal state.

3BSE035980-600 A 319

Acknowledgement Rules — State Diagrams Section 2 Alarm and Event Handling

Acknowledgement Rule 3

State 2
Inactive, Acked

State 5
Active, Unacked

Figure 138. State diagram for enabled alarm conditions with AckRule 3.

Regardless of the signal being monitored, alarm conditions with AckRule 3 changes
immediately to is normal state on acknowledgement. The alarm is no longer active
and disappears from the alarm list provided by an OPC client.

Acknowledgement Rule 4

Presently, Acknowledgement Rule 4 (AckRule 4) is reserved for future use.

Acknowledgement Rule 5

State 2
Inactive, Acked

State 5 l

Active, Unacked

State 4
Active, Acked

Figure 139. State diagram for enabled alarm conditions with AckRule 5, part 1.

AckRule 5 is used for so called sum system alarms. System alarms associated with
hardware units are typical examples of sum system alarms. They are used to indicate
several different errors that occur at the same time.

320 3BSE035980-600 A

Section 2 Alarm and Event Handling Alarm Shelving

There are two procedures for sum system alarms, that is, for AckRule 5. The first of
these is described in Figure 139 above. The sum system alarm is in its normal state
when it becomes active. Sum system alarms are used as a collection of errors and
Acknowledgement means that all errors are acknowledged. On becoming inactive it
returns to its normal state.

State 2
Inactive, Acked

State 3
Inactive, Unacked

State 5
Active, Unacked

Figure 140. State diagram for enabled alarm conditions with AckRule 5, part 2.

The second instance is shown in Figure 140 above. The sum system alarm is in its
normal state when it becomes active. It then becomes inactive, and on being
acknowledged returns to its normal state.

Any alarm can be disabled from any state, and when re-enabled placed in the
Inactive and Acked state. If the alarm state engine receives an incorrect Enable,
Disable or Acknowledgement request, the request is ignored.

Alarm Shelving

The alarm shelving function allows operators to temporarily handle undesired
alarms. Shelving occurs for a specified time limit, and calls for operator attention
when that time has elapsed.

Alarm Shelving allows the operator to customize alarm settings temporarily in
specific situations, and avoids unintended change to the alarm system design. This
also retains operator effectiveness and helps improve overall plant reliability.

Hidden alarms and disabled alarms cannot be shelved.

For more details about Alarm Shelving refer to System 800xA Operation
(3BSE036904*) and System 800xA Configuration (3BDS011222%*) manuals.

3BSE035980-600 A 321

Alarm Shelving Section 2 Alarm and Event Handling

322 3BSE035980-600 A

Section 3 Communication

Introduction

This section describes how to configure communication throughout your control
network. How to design your control network, and which protocol(s) to choose for
this is described in the AC 800M Communication Protocols (3BSE035982%).

Special restrictions apply to communication with SIL certified applications, see
the System 800xA Safety AC 800M High Integrity Safety Manual
(3BNPO0O4865%).

This section is split into the following parts:

Communication Libraries on page 324 gives a brief overview of the
Communication standard libraries.

Supported Protocols on page 340 gives a brief overview of the protocols
supported by control builder.

Control Network on page 341 describes Control Network, which is used to
communicate between controllers, engineering stations, and external devices.

Variable Communication on page 343 describes variable communication
briefly, and contains references to more detailed information.

Reading/Sending Data on page 348 describes reading and sending data.

Fieldbus Communication on page 355 describes the supported fieldbus
protocols briefly.

HART Communication on page 358 describes HART support (tool routing).

SIL Certified Communication on page 358 describes communication between
SIL certified applications, both between High Integrity controllers and between
applications residing in the same High Integrity controller.

3BSE035980-600 A

323

Communication Libraries Section 3 Communication

Communication Libraries

The Communication libraries contains a number of libraries, one for each protocol,
with function block types for reading and writing variables from one system to
another. Typical communication function block types are named using the protocol
name and function, for example, COMLIRead or INSUMConnect.

All supported protocols are described in the AC 800M Communication Protocols

@ (3BSE035982%*), which also contains general information about how to set up
communication in a control network. For detailed information on how to connect
and configure function block types and control module types, see the
corresponding online help (select the type and press F1).

COMLI Communication Library

The COMLI Communication library (COMLICommLib) contains function block
types and data types for COMLI communication.

COMLI function block types follow the IEC 1131 standard, but some divergences
occur. COMLI can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. Only address-oriented COMLI is supported on serial
channels.

Foundation FIELDBUS HSE Communication Library

The Foundation FIELDBUS HSE Communication library (FFHSECommL.ib)
contains data types, function block types and control module types for
FOUNDATION Fieldbus HSE (FF HSE) communication. Types from the library
can be used for direct communication with FF HSE devices via CI860, or to create a
FF HSE Link system, using CI860 communication units to communicate with the
controller.

Types from the FF HSE communication library can be used for:

* Publisher/Subscriber (also called Subscriber/Provider) communication, see
Publisher/Subscriber Communication on page 353 (for FF HSE, this method
only allow communication using the data types DS65 and DS66).

324 3BSE035980-600 A

Section 3 Communication Foundation FIELDBUS HSE Communication Library

Function Block Types

Variable of FFBooiConnection ype

BoolfQToFFOut

/ Output 1Y0O channel of BoollO type Variablie. Forward

]

Inpurtt 1) channel of BoollO type Varnahie Backward

Figure 141. BoollOToFFOut

Variable of FFDWordConnection type

DWordiQToFFOut

/ Outputt 1’0 channel of DWordlQ type Varable Forward

‘\ Input 10O channel of DWordlO type VarableBackward

Figure 142. DWordlOToFFOut.

Variable of FFBooiConnection ype

FFToBooliQm

Input 'O channel of BoollO type Varnable Forward

Output 110 channel of BoollO ype VYariahle. Backward

Figure 143. FFToBoollOlIn

3BSE035980-600 A 325

Foundation FIELDBUS HSE Communication Library Section 3 Communication

Variahie of FFOWordConnection type

FFToDWordiOin
Inpunt YO channel of DWordlOtype Variabie Forward
In Out
Qutput 10 channel of DyWordlO type Varable Backward /
Figure 144. FFToDWordIOIn
Control Module Types
Variable of FFRealConnectontype
AnaioginFFToCC

Input IO channel of ReallO type VarableForward

In Out C)

Output 1'O channel of ReallQ type Varablie.Backward

Figure 145. AnaloginFFToCC

Variable of FFReaConnection type

AnafogtCCToFF

/ Output 170 channel of ReallO type Varnable Forward

‘_‘K\

C) In Out

Input 1Y0 channel of ReallQ type Varabie.Backward

Figure 146. AnalogOutCCToFF

326 3BSE035980-600 A

Section 3 Communication

Foundation FIELDBUS HSE Communication Library

Examples of FOUNDATION Fieldbus HSE Connections

The below figures show examples of FOUNDATION Fieldbus HSE signal and IEC-
61131 variable connections in the Connections tab of CI860, using the DS65 and

IEC61131 variable1 (ReallO) |

IECE1131 variable2 (BoollO) |

<«——IEC61131 vanable3 (DWordiO) |

Outputs

- .
reasl ——»! |ECE1131 variabled (ReallO) |

Inputs

IECE1131 variables {BoollQ)

IECE1131 variable& (DWaordlO)

—»{IEC61131 variable7 (DWordiO) |

——» IEC61131 variables (BoollO) |

DS66 data types.
Channel MName Type ‘—}
FF D363 signall |-17 w10 FF Real Publish 0 real
I w1 FF Real Publish 1 real
w2 FF Real Publish 2 real
owi.3 FF Real Publich 3 real
Qw1497 FF Real Publish 497 real
Cw.4%8 FF Real Publish 492 real
OW1.499 FF Real Publish 499 rial
| FF DS66 signal1 }‘:_—_: Q11024 FF Discrate Publish O hoaol "—}
O 1025 FF Discrate Publish 0 dword
- QX1.1026 FF Digcrate Publish 1 bool
| _FFDSG6signal2 |@—— |gwi1007 FF Discrete Publsh 1 dword
Ou tp uts QX1.1520 FF Discrete Publish 248 bogl
awi. 1521 FF Discrete Publish 248 dword
Qx1.1522 IFF Discrete Publish 249 bool
owi.1523 FF Discrate Publish 249 o
FF DEES zignal? I—-r M1 .3072 FF Real Subscnbe 0
I J W1 3073 FF Real Subscnbe 1 real
M¥1.3074 FF Real Subscnbe 2 real
Inputs
I¥1.4069 FF Real Subscribe 997 real
W1, 4070 FF Real Subscribe 928 riral
W1 4071 FF Real Subscrbe 999 real
- (X1.4056 FF Discrete Subscribe 0 bool ————
|_FF DS66 signal3 I'i_-*—-h- IW1.4097 FF Discreta Subscribe D |dword >
" (1 4058 FF Discrate Subsenbe 1 hool
FF D 14
[[FroSe8 signaid =Lt 00 Fr Discste Subscabe 1 s
- [xX1.5092 FF Discrete Subscribe 498 |bool
i
| FF DSB6 signals I.:::: W1.5093 FF Discrete Subscribe 498 |dword
[X1.5094 FF Discrete Subscribe 499 |bool
WV1.5095 FF Discrete Subscribe 499 |dword

ﬂ I addition to communication I/O channels, there are 10 channels containing
extended status information from the CI860 unit, and the UnitStatus channel. See

figure below.

3BSE035980-600 A

327

INSUM Communication Library

Section 3 Communication

INSUM Communication Library

%1.6500
Iv%1.6501
IW1.6502
I1.6503
[¥1.6504
I1.6505
W¥1.6506
41,6507
W1.6508
41,6509
W¥1.6510

|Mo of HSE publisher |dint
Mo of HSE subscriber |dint
Resemved 1 |dint
[No of send failed |dint
Mo of exp. stall count dint
|Average FF load |dint
UDP recenved wio processing [dint
|Resemved 2 dint
:HBSBNGd 3 '_dlnl
Reserved 4 dint
UnitStatus |dint

The INSUM Communication library (INSUMCommLib) contains function block
types and data types for INSUM (Integrated System for User-optimized Motor

control) communication.

INSUM is a system for protection and control of motors and switchgear. AC 800M
controllers communicate with the INSUM system via TCP/IP, using the
communication interface CI857.

Usage and Status Information for INSUMConnect Function Block

To establish connection using INSUMConnect, set the value of the En_C parameter
to ‘true’, and specify the remote system with the CIPos and GWPos parameters. A
reference to the connection is inserted into the Id parameter so that this parameter
can be used by other function blocks communicating via the same connection (for
example, INSUMReceive and INSUMWrite function blocks).

The execution status of INSUMConnect is presented via the following parameters:

A "bool" parameter that indicates if the connection is working (true) or not

e Valid
(false)
. Error

A "bool" parameter that is true during one execution cycle, after the detection

of an error.

J Status

328

3BSE035980-600 A

Section 3 Communication INSUM Communication Library

A "dint" parameter that gives a value about the execution status of the function
block. A negative value means an error.

e MsgStatus

A "INSUMGWMsgStatus" structure that contains status information about the
connection. This information is received from the gateway.

. GWStatus

A "INSUMGWStatus" structure that contains status information about the
gateway. This information is collected by other means that just handles the
connection (for example, the supervision of the CI857 module).

Usage and Status Information for INSUMReceive Function Block

To activate cyclic reading of data through INSUMReceive, set the value of EN_R
parameter to ‘true’, and connect the Id parameter of INSUMReceive to the Id
parameter of an INSUMConnect function block.

The execution status of INSUMReceive is presented via the following parameters,
apart from the common parameters like Valid, Error, and Status (which are
described for INSUMConnect):

. Ndr

A "bool" parameter that is set to “True’ during one execution cycle, after the
new data is received through the Rd parameter or any of the status parameters.

* MsgStatus

An "INSUMDeviceMsgStatus" structure that contains status information about
the Network Variable subscription created by this INSUMReceive block. This
information is received from the gateway.

. DeviceStatus

A "dint" value that contains status information about the INSUM device from
which the INSUMReceive block receives data. This information is received
from the Field Device List in the gateway.

3BSE035980-600 A 329

INSUM Communication Library Section 3 Communication

Usage and Status Information for INSUMWrite Function Block

To run the write operation through INSUMWrite, set the value of the Req parameter
to ‘true’, and connect the Id parameter of INSUMWrite to the Id parameter of an
INSUMConnect function block.

The execution status of INSUMReceive is presented via the GWMsgStatus
parameter, apart from the common parameters like Error and Status (which are
described for INSUMConnect). The GWMsgStatus is a "dint" field that contains
status information about how the write operation is executed. This information is
received from the gateway.

The INSUM system consists of devices that are connected via a LonWorks network.
There are different device types for different types of equipment that can be
controlled and supervised. The device type used for motor control is called a Motor
Control Unit (MCU). The MCU is located in the motor starter module.

Network Variables in Motor Control Units (MCU)

The table shows Network Variables that are defined in the INSUM Motor Control
Unit.

Function/Object . . i

in MCU NV name in MCU Dir. Description

Current nvoCurrRep In Current information: A, % and Earth

Measurement current

TOL (Thermal nvoCalcProcVal In Thermal capacity: % to Thermal

overload) Overload

nvoTimeToTrip In Estimate of time until the motor will trip
due to thermal overload based on the
current load.
330 3BSE035980-600 A

Section 3 Communication

INSUM Communication Library

Function/Object

in MCU NV name in MCU Dir. Description
Motor Control nvoTimeToReset In Remaining time until it is possible to
reset the MCU after a thermal overload
trip.
nviDesState Out Commands: Start, Stop etc
nvoCumRunT In Cumulated run hours
nvoMotorStateExt In Motor status: Running, Stopped, Alarm
etc
Contactor 1 nvoOpCount1 In Number of switch cycles for contactor 1.
Contactor 2 nvoOpCount2 In Number of switch cycles for contactor 2.
Contactor 3 nvoOpCount3 In Number of switch cycles for contactor 3.
Control Access nviCAPass Out Control access commands:
Local/Remote control of the device
nvoActualCA1 In Feedback of Control access commands
Node nvoAlarmReport In Alarmreport with Warning- and Trip
information
Voltage nvoVoltRep In Phase voltages and frequency
Measurement
Power nvoPowRep In Motor power: Active power, reactive
Measurement power and power factor
General Purpose | nviGpOut1 Out General Purpose Output 1
1/0
nvoGpOut1Fb In Feedback of General Purpose Output 1
nviGpOut2 Out General Purpose Output 2
nvoGpOut2Fb In Feedback of General Purpose Output 2
nvoGplin1i In General Purpose Input 1
nvoGpln2 In General Purpose Input 2

3BSE035980-600 A

331

MB300 Communication Library

Section 3 Communication

Network Variables in Circuit Breakers

The table shows Network Variables that are defined in the INSUM Circuit Breakers.

Function/Object in

NV name in Circuit

Circuit Breaker Breaker Dir. Description
Node nvoNodeAlarmRep In Alarm report with Warning- and Trip
information
nviNodeCommand Out Commands: Open, Close etc
nvoNodeStatusRep In Circuit Breaker Status: Closed, Open,
Alarm etc
RMS Current nvoAmpsCurrRep In Current information: A, % and Earth
current
Control Access nviCAPass Out Control access commands:
Local/Remote control of the device
nvoCAOwner In Feedback of Control access commands

MB300 Communication Library

The MB300 Communication library (MB300CommLib) contains function block
types for MB300 communication. The MasterBus 300 (MB 300) protocol can be
used with AC 800M and AC 400. The CI855 communication interface unit for AC
800M is used to connect to AC 400 controllers via MasterBus 300.

Dataset communication between controllers connected to MasterBus 300 is handled
by three function blocks. A dataset consists of an address part and up to 24 elements
(32-bit values). Values can be a 32-bit integer, a 16-bit integer, a real or 32 booleans.

Each CI855 unit behaves as a unique node on the MasterBus 300 network it is
connected to, and has to be configured accordingly in the Control Builder hardware

tree.

332

3BSE035980-600 A

Section 3 Communication MMS Communication Library

MMS Communication Library

The MMS Communication library (MMSCommLib) contains MMS data types,
function block types and control module types for establishing communication with
systems using the MMS protocol. MMS (Manufacturing Message Specification) is
used as a common application layer protocol. MMS defines communication
messages transferred between units, and has been specifically designed for
industrial applications.

SIL certified communication is supported, see the AC 800M Communication
@ Protocols (3BSE035982%*), and SIL Certified Communication on page 358.

MMS is the base protocol in Control Network. All communication between Control
Builders/OPC Servers and controllers uses MMS, for example, project download,
firmware download and online communication. Alarm and event handling also uses
MMS.

If the MMS Communication library is used, the communication between controllers
can be defined using access variables and function block types and/or control
module types from the MMS Communication library.

ﬂ It is also possible to define the communication between controllers without using
MMSCommlLib, by using the IAC feature and communication variables.

For more information on MMS communication, see the AC 800M Communication
Protocols (3BSE035982%*).

SIL Certified Communication (MMS)

The MMS communication library provides data types, function block types and
control module types for safe communication with other controllers or between
applications running in the same controller.

A number of the MMS communication function blocks and control modules are SIL
marked, see SIL Certified Application in the System 800xA Control AC 800M
Getting Started (3BSE041880%).

For more information on safe communication, see SIL Certified Communication
@ on page 358.

3BSE035980-600 A 333

MODBUS RTU Communication Library Section 3 Communication

MODBUS RTU Communication Library

The MODBUS RTU Communication library (ModBusCommLib) contains data
types and function block types for communication via the MODBUS protocol.

MODBUS can be used for point-to-point or multidrop communication.
Communication takes place serially and asynchronously, based on the master/slave
principle, and in half duplex. MODBUS slave communication is not supported, only
master communication.

MODBUS TCP Communication Library

The MODBUS TCP communication library (ModBusTCPCommLib) contains
function blocks types supporting the MODBUS TCP protocol. The types are used
for MODBUS TCP communication through Ethernet ports on CI867.

MODBUS is a request response protocol and offers services specified by function
codes and supports both master and slave functionality.

The master functionality provides the possibility to access registers and coils in
other MODBUS TCP devices for both write and read operations. It is also possible
for masters to retrieve status/diagnostic information from the slaves.

The slave functionality provides the possibility for other devices to access Access
Variables. Both read and write operations are possible.

Modem Communication Library

The Modem Communication library (ModemCommLib) contains function block
types used for serial communication over a modem. To use a modem connection, the
modem must be configured to a serial (Com) port and the COMLI protocol must be
added and configured (for more information, see Control Builder online help).

For more information about modem communication, see also the AC 800M
Communication Protocols (3BSE035982%).

Siemens S3964 Communication Library

The Siemens S3964 Communication library (S3964CommLib) contains function

block types to establish communication with a system supporting the Siemens
3964R protocol.

334

3BSE035980-600 A

Section 3 Communication SattBus Communication Library

Siemens 3964R is a point-to-point protocol, which means that only one Siemens
system can be connected to each channel. The Siemens system requires an
Interpreter RK 512 unit.

SattBus Communication Library

The SattBus Communication library (SattBusCommlLib) contains function block
types supporting SattBus. The types are used to communicate through Ethernet,
using the SattBus name-oriented model.

SattBus is only available for TCP/IP on Ethernet.

MTM Communication Library

The MOD5-to-MODS5 communication library, MTMCommLib, provides function
blocks to implement variable communication client in MODS controller to
AC 800M communication.

The MTMCommLib contains function block types.

The MODS5-to-MODS (MTM) protocol consists of request and response messages
that are exchanged each second.

The requests sent to other connected systems are determined by the control
application. The response sent at each second is determined by the requests received
at the previous second from other connected systems. The application programmer
accesses the protocol functions through standard function blocks.

The library uses the functions blocks MTMConnect, MTMReadCyc, MTMDefCyc,
and MTMDefERCyc to translate the request and to answer the MODS commands.

3BSE035980-600 A 335

Serial Communication Library Section 3 Communication

Serial Communication Library

The Serial Communication library (SerialCommLib) contains function block types
for communication with external devices (for example printers, terminals, scanner
pens) via serial channels with user-defined protocols. You can write an application
which controls the characters sent and checks whether the correct answer is
received, using serial channel handling function blocks.

Some of the function block types in Serial CommLib are certified SILx Restricted.
They are allowed to be used in SIL classified applications, but the communicated
data can not be used for safety critical functions without adding a safety layer as
described in SIL Certified Communication on page 358.

The following use cases help in understanding the libraries used in serial
communication.

Establishing a valid connection for serial communication

The prerequisites to establish a valid serial port connection for reading data from a
physical device or writing data to a physical device are:

* Download the 61131-3 application that contains SerialCommLib and
SerialHWLib.

. Instantiate the SerialConnect function block.

After the connection is established, the protocol is configured with the default
behavior (read and write messages ended by an EOM (End of Message)). The
default behavior is described by the parameters like En_C, Channel, Partner, Valid,
Error, Status, and ID, which are present in the function block.

If a malfunction of the connected CI853 communication module is detected, the
module can be replaced by a new one, and the connection to the serial port is
automatically reestablished.

Adding a CRC calculation to a message in serial communication
The prerequisites to add a CRC calculation to a message are:
* Establish a valid connection to the serial port.

* Instantiate the SerialSetup function block in the 61131-3 application.

336

3BSE035980-600 A

Section 3 Communication Serial Communication Library

After the CRC calculation is added, the settings of CRC remain intact even after a
disconnect operation.

Enabling basic listening for serial communication

The prerequisites to enable the basic listening of serial communication data from a
device are:

» Establish a valid connection to the serial port.
* Instantiate the SerialListen function block in the 61131-3 application.

The input parameters for basic listening are message length, end of message, and
number of trailing characters.

After the basic listening is enabled, the string message (which is the output seen in
the Rd parameter) is received by the input device.

Enabling basic writing of serial communication data

The prerequisites to enable the basic writing of serial communication data to a
device are:

» Establish a valid connection to the serial port.
* Instantiate the SerialWrite function block in the 61131-3 application.

After the basic writing is enabled, the output is an acknowledgment from the Sd
parameter.

Example (Buffer handling)

A SerialListen function block is set up to read a specified message length of for
example 5 characters (MsgLength = 5).

While the Enable parameter has the value True and the buffer contains characters
the Ndr parameter will be True and 5 characters at a time will be passed to the Rd
parameter.

If an incoming message "012345678901234" has been received with a size of 15
characters (3x5) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (012345678901234), Buffer = 5678901234
Second scan: Rd = 56789 (012345678901234), Buffer = 01234

3BSE035980-600 A 337

TCP and UDP Communication Libraries Section 3 Communication

Third scan: Rd= 01234 (012345678901234), Buffer is empty
There will be no fourth scan since the buffer is empty.

If the message length is not a multiple of the MsgLength parameter the buffer will
keep the remaining characters until the number of characters in the buffer again is
greater than or equal to the MsgLength parameter value.

If an incoming message "0123456789012" has been received with a size of 13
characters (2x5+3) and is stored in the buffer the following will occur:

First scan: Rd = 01234 (0123456789012), Buffer = 56789012
Second scan: Rd = 56789 (0123456789012), Buffer = 012

There will be no third scan as the buffer does not contain at least 5 characters. The
buffer will retain these values until additional characters are added to the buffer and
it once again equals, or exceeds, 5 characters in length. At that time, the first 5
characters will be passed to the Rd parameter.

By setting the En_C parameter of the SerialConnect function block to value False
(disconnecting), the buffer of the serial channel will be cleared.

TCP and UDP Communication Libraries

The UDP communication library (UDPCommLib) and TCP communication library
(TCPCommLib) library provide function blocks that can be used to implement
protocols running on UDP or TCP.

The typical usage of these libraries is when the controller needs to communicate
with external equipment. Some examples are:

e Communication with different road-infrastructure network nodes such as
variable speed signs, traffic direction and information signs.

* Vision cameras — Many vision cameras implement the Telnet protocol (ASCII
TCP communication over standard port number 23).

* Information server — The controller may function as both client and server on
the network. Example of server use is a SCADA application where a
supervisory system connects to different servers and collects information
periodically.

338

3BSE035980-600 A

Section 3 Communication Generic |10 Communication Library

UDP communication does not establish a connection prior to sending/receiving. The
UDPCommLib supports broadcasting with which one node can send a message that
is received by many nodes.

TCP is a point-to-point connection. Using TCPCommLib also ensures that the
messages are delivered without loss.

The only hardware configuration that is needed in Control Builder is to attach the
UDPProtocol and TCPProtocol hardware types (from UDPHwLib and TCPHwLib
respectively) under the IP position in the AC 800M controller hardware tree.

Generic |0 Communication Library

The Generic IO Communication library (I0OCommLib) contains the function block
types IOConnect, IORead and IOWrite for acyclic communication. These function
block types are generic to be used by different communication protocols.
PROFINET IO with CI871 is the first communication protocol that uses it.

3BSE035980-600 A 339

Supported Protocols

Section 3 Communication

Supported Protocols

Table 25 lists all supported protocols.

Table 25. Protocols supported by Control Builder

Protocol

Port/Interface

MMS on Ethernet

CN1, CN2 (TP830)

MMS on RS-232C (PPP)

COMS3 (TP830), CI853

MasterBus 300

Cl855

SattBus on TCP/IP

CN1 (TP830)

comLIM

COMS3 (TP830), CI853

Siemens 3964R®

COM3 (TP830), CI853

MODBUS RTU("

COM3 (TP830), CI853

MODBUS TCP on Ethernet(!)

Ch1, Ch2, CI867

IEC 61850 Ch1, CI868
FOUNDATION Fieldbus HSE | CI860
PROFIBUS DP Cl854
DriveBus CI858
INSUM Cl857
MOD5-to-MOD5 Cl872

AF 100 Cl869
PROFINET 10 Cl871
EtherNet/IP Cht, CI873
UDP Ch1, Ch2
TCP Ch1, Ch2

(1) Both master and slave
(2) Master only

340

3BSE035980-600 A

Section 3 Communication Control Network

For more information on supported protocols, see the AC 800M Communication
Protocols (3BSE035982%).

Control Network

Control Network is a private IP network domain especially designed for industrial
applications. This means that all communication handling will be the same,
regardless of network type or connected devices. Control Network is scalable from a
very small network with a few nodes to a large network containing a number of
network areas with hundreds of addressable nodes (there may be other restrictions
such as controller performance).

Control Network uses the MMS communication protocol on Ethernet and/or
RS-232C to link workstations to controllers. In order to support Control Network on
RS-232C links, the Point-to-Point Protocol (PPP) is used.

For information on time stamps and clock synchronization within Control

@ Network, see the AC 800M Communication Protocols (3BSE035982%*). Time
synchronization is also briefly described in Section 2, Alarm and Event
Handling.

Control Network, as well as other protocols and fieldbuses, is configured using
Control Builder (via the Project Explorer interface). Control Network settings are
specified in the parameter lists, accessed by right-clicking CPUs, Ethernet ports
and/or PPP connections.

The address of controller Ethernet ports should in some cases be set using the
@ IPConfig tool. See the System 800xA Control AC 800M Getting Started
(3BSE041880%*).
For information on communication parameter settings, see Control Builder
@ online help for the object in question. Select the object in Project Explorer, then

press F1 to display the corresponding online help topic.

Network Redundancy

The Redundant Network Routing Protocol (RNRP), developed by ABB, handles
alternative paths between nodes and automatically adapts to topology changes.

For more information on redundancy and RNRP, see the System 800xA Network
Configuration (3BSE034463%).

3BSE035980-600 A 341

Statistics and Information on Communication Section 3 Communication

Statistics and Information on Communication

V

Statistics concerning all MMS communication and Inter Application
Communication (IAC) in a system are displayed in the Remote System dialog.
Information can be viewed at any engineering station that is connected to the
network, by selecting Tools > Maintenance > Remote System, followed by Show
Remote Systems.

You can get the following MMS-related information:

* Tools > Maintenance > Remote System > Show MMS Variables shows
which MMS variables are present in the selected remote system

* Tools> Maintenance > Remote System > Show MMS Connections shows
all connections, including information on the type of connection, the
destination system, and a number of statistics.

The information regarding IAC (using communication variables) can be accessed
from Tools > Maintenance > Remote System > Show Diagnostics for
Communication Variables. See Diagnostics for Communication Variables on page
471.

There is also a function block type System Diagnostics that is stored in the Basic
library. This function block will (among other things) show Communication
variables, IAC, and Ethernet statistics.

For more information on the contents of the Remote System dialog and the
System Diagnostics function block type, see Control Builder online help.

342

3BSE035980-600 A

Section 3 Communication Variable Communication

Variable Communication

Communication between applications uses access variables and communication
variables.

Access Variables

Access variables are defined in the access variable editor, which is displayed by
double-clicking Access Variables in the Controllers folder. The access variable
editor can also be displayed from the application editor, by double-clicking an
access variable field in the Access Variables column.

Access variables can use the MMS, COMLI, MODBUS TCP and SattBus protocols.
MMS and SattBus variables are declared in the Access Variable Editor under the
corresponding tab, COMLI and MODBUS TCP variables under the Address tab.
Paths to local variables are given using the syntax
ApplicationName.ProgramName.FunctionblockName.VariableName

Communication Variables

Communication variables are used for cyclic communication between top level
diagrams, programs, and top level single control modules. These objects can exist in
the same application, the same controller, or in another controller. The name of the
communication variable must be unique on the network to resolve the IP-address
during compilation.

Communication variables behave differently depending on where the in and out
variables are placed:

* Inand out variables are in the same application and connected to the same
IEC 61131-3 task

— In this case, the in and out variable represents the same physical memory
location; hence no communication is setup.

3BSE035980-600 A 343

Communication Variables Section 3 Communication

* [nand out variables are in the same application, but connected to different IEC
61131-3 tasks; or the in and out variables are in different applications in the
same controller

— In this case, fast data copying is performed at each 61131-3 task scan for
the in variable. This type of IAC is called internal IAC, where the data is
copied between different memory locations, and this does not involve any
real communication. This is controlled by the task time, hence no external
communication is setup.

— If the in variable is defined in a SIL3 application and the out variable is
defined in a lower SIL application, communication is driven by
considering the in variable as external variable. This results in external
IAC, and the client receives new values based on the configured interval
time. This case is different from the normal internal IAC.

* In and out variables are in different applications in different controllers
(external communication)

In this case, the actual external IAC occurs, and the client receives new values
based on the configured interval time. The protocol used is IAC_MMS, which
is based on User Datagram Protocol (UDP).
Five different interval time categories are used and these are configured on the
TAC_MMS hardware unit in Control Builder.

Communication variables are declared in the editor for diagrams, programs and top
level single control modules in Control Builder.

ﬂ The communication using the declared communication variables happens only if
the IP and IAC MMS hardware types are inserted under the controller in the
hardware tree in Control Builder.

For more information about variable communication, see Variables and
@ Parameters on page 81.

344 3BSE035980-600 A

Section 3 Communication StartAddr

®

StartAddr

Communication with SIL-certified applications and AC 800M High Integrity
controllers is restricted, and must use Inter Application Communication (IAC)
(using communication variables) or SIL certified MMS communication
function blocks . For more information on SIL. communication restrictions, see
the System 800xA Safety AC 800M High Integrity Safety Manual
(3BNP004865%), See also SIL Certified Communication on page 358.

All read and write function blocks have a StartAddr parameter. The StartAddr
identifies the first requested variable in the remote system.

Set a prefix and a start address via the StartAdr parameter. This sets the access
variable which identifies the memory area in the remote system from which data is
to be read or to which it is to be written.

For further information regarding memory addressing: see IEC 61131-3 Variable
Representation for IEC 61131-3 direct addressing and Access Variable Syntax for
direct addressing.

Example 1

You can read 16 bits from a subsystem, starting from the decimal address 64 (octal
address 100), as follows.

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

3BSE035980-600 A 345

StartAddr

Section 3 Communication

Table 26. StartAddr parameter setting (16 bits)

Protocol

IEC 61131-3 Direct Addressing

Direct Addressing (Octal, 8# only)

MODBUS RTU/
MODBUS TCP

%IX8#100 (input)
%QX8#100 (output)
%IX10#64 (input)
%QX10#64 (output)
%IX16#40 (input)
%QX16#40 (output)

Not supported

COMLI

%MX8#100
%MX10#64
%MX164#40

%X100 or X100

Siemens 3964R

%MX84#100
%MX10#64
%MX16#40

%X100 or X100

Text in bold face indicates the most commonly used values.

Example 2

If you exclude the base from the format it is assumed to be base 10. For example,
%MX64 is interpreted as %M X10#64.

You can read a Register 45 from a subsystem, starting from the decimal address 45,
as follows:

346

3BSE035980-600 A

Section 3 Communication StartAddr

Connect a structured variable declared with 16 Boolean components to the Rd[1]
parameter in the COMLIRead function block. Then set the StartAddr parameter to:

Table 27. StartAddr parameter setting (Register 45)

Protocol IEC 61131-3 Direct Addressing Direct Addressing (Octal, 8# only)
MODBUS RTU/ %MW8#55 Not supported
MODBUS TCP %IW8#55 (input)

%QW8#55 (output)

%MW10#45

%IW104#45 (input)
%QW104#45 (output)

%MW16#2D

%IW16#2D (input)
%QW16#2D (output)

COMLI %MW8#55 %R45 or R45
%MW10#45
%MW16#2D

Siemens 3964R %MW8#55 %R45 or R45
%MW10#45
%MW16#2D

Text in bold face indicates the most commonly used values.

If you exclude the base from the format it is assumed to be base 10. For example,
@ %MW4S5 is interpreted as MW 10#45.

3BSE035980-600 A 347

Reading/Sending Data Section 3 Communication

Reading/Sending Data

i
®

The communication libraries contain all types you need to set up communication for
the supported protocols. For most protocols, there are three main types:

Due to variations between various protocols, the name of individual types and
parameters may vary slightly between the different communication libraries.
However, the communication principles are still the same.

Communication function blocks should not be called more than once per scan.
Exceptions to this are stated explicitly in the corresponding online help. Do not
call communication function blocks in SFC, in IF statements, in CASE
statements, etc.

Connect Types

Connect types are used to initiate a communication channel and establish a
connection to a remote system with a unique node address in a network.
Connect types are used to open a communication channel. The identity of the
opened channel is communicated to the Read and Write types via an identity
parameter (the exact name of this parameter varies between protocols). For
example, MMSConnect is used by MMSRead and MMSWrite.

A connection is established when an enable parameter is set to true. This means
that a communication channel can be opened whenever needed. The identity of
the system to which a connection has been established is communicated to the
corresponding read and write types via an Id parameter.

Connect types have a built-in continuous supervisory function, which detects if
communication is interrupted after connection has been established.

Normally you use the VarName parameter in MMSRead function block for
reading different variables online. However, all the MMSRead4* function blocks
are a little bit different. For example, you cannot change the VarName parameter
directly in Online for these MMSRead4* function blocks. Instead, after changing
the VarName parameter (for reading another variable), you must also set the
parameter EN_C in the MMSConnect function block to false (one scan) and then
back to true again before the new variable can be read.

348

3BSE035980-600 A

Section 3 Communication Reading/Sending Data

ﬂ The MMSWrite is used for communication between applications.
Communication between applications residing in different controllers is called

external, and is asynchronous. Communication between applications within the
same controller is called internal. The internal copy is synchronous or
asynchronous based on the amount of data copied.
The basic algorithm is based on how much data that can be copied synchronously
without disturbing the execution of 1131 tasks, that is the task latency must be
less than 2 ms. The total amount of data to be copied is about 800 bytes of
variable data. If the total of 800 bytes is exceeded the internal copy may affect the
task latency negatively and therefore the internal copy is executed
asynchronously.

* Read Types
Read types read data (often an access variable) from a target system. The
source system (the communication channel) is indicated by the Id parameter,
which is passed from the corresponding connect function block or control
module.

* Write Types
Write types write data to a target system. The target system (the
communication channel) is indicated by the /d parameter, which is passed from
the corresponding connect function block or control module.

For some protocols, there are also additional types, such as types for cyclic reading
of data, data conversion, download of measuring ranges, etc.

3BSE035980-600 A 349

Connection Methods Section 3 Communication

Connection Methods

Function blocks from the communication libraries are used to read and write
variables from a remote system:

- N INSUMCommLib1.2-2

..... I, Connected Libraries

----- & Data Types

EI &) Function Block Types
e Jaf INSUMConnect

- Jak INSUMReceive

e Jaf INSUMWrite

= [MB300CommlLib 1.2-2

..... I, Connected Libraries

EI & Function Block Types
- dak MB300Connect
i Jaf MB300DSReceive

. Jat MB300DSSend

Figure 147. Function blocks in the communication libraries.

In the application program, a common Connect function block is used in a client
(master) to establish connection to a server (slave). The function blocks Read and
Write can then be used repeatedly. Refer to online help for a description of the
parameters concerned. Variables to be accessed must be declared in the server
Access variable editor.

To display the editor, right-click the Access Variables object and select Editor.
Example 1:

Controller 2 (client) connects to Controller 1 (server) by means of a Connect
function block. Refer to online help for a description of how Partner and Channel
are specified for different communication protocols. Read and Write function blocks
with the same identity (ID) as the Connect block can then be used repeatedly.

As an example, Controller 2 has a Read function block in its application program
that sends a Read request to Controller 1 for an access variable named %R100. This
name must exist in the access variable list in Controller 1, which then reads the
value of Program1.A (%R100) and sends it to Controller 2. The value is then written
to the application variable named in Rd.

350

3BSE035980-600 A

Section 3 Communication

Connection Methods

In the same way, the value of a variable in the Controller 1 access variable list can be
changed by means of a Write function block in Controller 2.

Controller 1 (server)

Controller 2 (client)

Access
variable
list

%R100 =

Program1.A
%R100

Connect
g Partner
g Channel ID
Read Write
StartAddr ID 1D
StartAddr
H— — — | Rd
Sd

Figure 148. Variable read by controller 2, from controller 1.

The function blocks ReadCyc and WriteCyc perform in a similar manner, but are
used to cyclically read or write to/from a server system with the interval specified by
the SupTime parameter.

Example 2:

Write and read requests are triggered by the Reg parameter being set to True after

having been False for at least one scan. This problem can be avoided if two function
blocks are executed, one after the other. In this way, a request is always outstanding.
Additional requests triggered by the Req parameter will be ignored by the function
block, until the Done (or Ndr) parameter has become True.

3BSE035980-600 A

351

Communication Concepts Section 3 Communication

Write
Req Done |—

StartAddr

Write
—e Req Done +—

StartAddr

Figure 149. Resetting the Req parameter using two function blocks.

Communication Concepts

When setting up communication with external devices and other controllers, it is
also important to be familiar with the following:

* The client/server concept (master/slave), see Client/Server Communication on
page 352,

* The publisher/subscriber (also called subscriber/provider) concept, see
Publisher/Subscriber Communication on page 353.

* There is also the choice between cyclic and asynchronous communication, see
Cyclic vs. Asynchronous Communication on page 354.

Client/Server Communication
The main principle of client/server communication is the following:
* The client is the active party, which requests (reads) data from the server.

* The server is a passive provider of information that simply answers to requests
from the clients.

Client/server communication could also be described as master/slave
@ communication. In that case, the client is the master, and the server is the slave.

352 3BSE035980-600 A

Section 3 Communication Communication Concepts

Figure 150 shows the principle.

Server application

Function block Data (sent on request)

providing data
(server)

(Communication Channel)

block (client)

I |
I I
Request for data (cyclic or triggered) | Read function |
| I
I |
I |

Client application

Figure 150. Client/server principle. The client reads data from the server. The
server sends data to the client when requested.

Publisher/Subscriber Communication
The main principle of publisher/subscriber communication is the following:

* The publisher publishes (the publisher is also known as the provider) data
cyclically, in a pre-determined location.

* The subscriber is a consumer of information, which subscribes to published
data.

Figure 151 shows the publisher/subscriber principle.

3BSE035980-600 A 353

Communication Concepts Section 3 Communication

Publisher application

providing data
(server)

| |
| |
| |
| Function block |
| |
| |

(Communication Channel)

Data (written cyclically)

r—— - - - - — — — A
' Request for data (cyclic or triggered)
-
Data storage (Communication Channel)

|

: Read function

| - block (subscriber)
|

Data (sent on request)

Subscriber application

Figure 151. Publisher/subscriber principle. The publisher publishes data to a pre-
defined location, which is read by the subscriber.

Cyclic vs. Asynchronous Communication

An important decision when setting up communication is whether communication
should be cyclic, that is, take place regularly, with a certain time interval, or
asynchronous, that is, take place when triggered by a certain event or condition.

Which method to use depends on things such as:
e How much does the execution of communication code affect performance?

* How often can a value be expected to change?

354 3BSE035980-600 A

Section 3 Communication Fieldbus Communication

* How important is it that a change in a certain value is communicated

immediately?
For more information about communication, performance and design, see System
@ 800xA Control AC 800M Planning (3BSE043732%).
For information on how to make part of your code execute with a different
@ interval, see Control the Execution of Individual Objects on page 113.

Fieldbus Communication

Fieldbuses offer communication on a dedicated bus, using a special fieldbus
communication protocol. Fieldbus devices often contain distributed code, which
means that they need to be set up not only from Control Builder, but also using a
fieldbus-specific configuration tool.

For detailed information on how to configure the fieldbuses, refer to the

@ corresponding, fieldbus-specific documentation. For detailed information on how
to configure communication with fieldbus devices, see the corresponding Control
Builder online help.

ﬂ Fieldbus communication requires separate licenses.

PROFIBUS DP

PROFIBUS (PROcess Fleld BUS) is a fieldbus standard, especially designed for
communication between systems and process objects. This protocol is open and
vendor independent. It is based on the standard EN 50 170. With PROFIBUS,
devices from different manufacturers can communicate without special interface
adjustments. PROFIBUS can be used for both high speed, time critical transmission
and extensive, complex communication tasks.

PROFIBUS has defined the three types of protocol: PROFIBUS FMS, DP and PA.
With AC 800M access to PROFIBUS DP and PA is supported.

PROFIBUS DP is connected to the controller via the CI854/CI854A communication
interface unit. The connection to PROFIBUS PA can be established by use of the
Linking Device LD 800P that links between PROFIBUS DP and PROFIBUS PA.

3BSE035980-600 A 355

Fieldbus Communication Section 3 Communication

The original version of PROFIBUS DP, designated PROFIBUS DP-VO0, has been
expanded to include version DP-V1 and DP-V2. With CI854/CI854A support for
DP-V1 and the acyclic services (toolrouting) is given. In addition CI854/CI854A
supports line and slave redundancy and CI854A supports master redundancy as
well.

The PROFIBUS DP-V0 configuration and parameter data for slave devices are
engineered in Control Builder and downloaded via CI854/CI854A.

PROFIBUS slave types are usually supplied with a *.gsd file. This file describes the
properties of the slave type. The *.gsd file must be converted with the Device Import
Wizard, in order to be used in the project.

PROFINET IO

PROFINET is a manufacturer-independent Fieldbus standard for applications in
manufacturing and process automation. PROFINET technology is described in fixed
terms in IEC 61158 and IEC 61784 as an international standard.

PROFINET IO uses Ethernet communication to integrate simple distributed I/O and
time-critical applications.

PROFINET IO describes a device model oriented to the PROFIBUS framework,
which consists of places of insertion (slots) and groups of I/O channels (subslots).
The technical characteristics of the field devices are described by the General
Station Description (GSD) on an XML basis. The PROFINET IO engineering is
performed in a way familiar to PROFIBUS. The distributed field devices are
assigned to the controllers during configuration.

The PROFINET IO is interfaced to the IEC 61131 controller AC 800M, using the
PROFINET IO module CI871.

PROFINET IO is based on IEEE 802.3. PROFINET IO uses Ethernet, TCP, UDP,
and IP as the basis for communication. It is designed to work with other IP-based
protocols on the same network.

The transmission of time-critical process data within the production facility, occurs
in the Real-Time (RT) channel.

356

3BSE035980-600 A

Section 3 Communication Fieldbus Communication

DriveBus

The DriveBus protocol is used to communicate with ABB Drives and ABB
Special I/O units. DriveBus is connected to the controller via a CI858
communication interface unit.

Advant Fieldbus 100

Advant Fieldbus 100 (AF 100) is a high performance fieldbus, which is used for:

e Communication between Advant Controllers.

e Communication between Advant Controllers and S800 I/O Stations, AC 800M
controllers, and so on.

Advant Fieldbus 100 supports three transmission media:
* Twisted pair (Twp)

¢ Coaxial (RG59 and RG11)

* Optical media.

An AF 100 bus can be built up with all the three media, where a part of one kind of
media is a specific segment.

The CI869 communication interface that is attached to the AC 800M controller
provides connectivity to other AC 800M, AC 160 or connectivity server over

AF 100. An AC 800M controller with the communication interface CI869 behaves
as an AF 100 station, receiving data from other AF 100 stations/devices. The CI869
has integrated Twisted Pair modem:s.

The Advant Fieldbus 100 supports two different kinds of communication:

* Process data—Dynamic data used to monitor and control a process

* Message transfer—Used for parameters, program loading, and diagnostic
purposes.

3BSE035980-600 A 357

HART Communication Section 3 Communication

HART Communication

The protocols used by the supported fieldbuses are described in detail in the
@ AC 800M Communication Protocols (3BSE035982%).

HART (Highway Addressable Remote Transducer) is an open system
communication protocol that supports remote configuration and supervision of
devices with HART support, via ModuleBus or via PROFIBUS DP-V1 (tool
routing).

For more information on HART support, see the AC 800M Communication

@ Protocols (3BSE035982%), and the Control Builder online help. For information
on how to configure tool routing, see online help for Control Builder and online
help for the Tool Routing Service, which is part of the 800xA system installation.

SIL Certified Communication

ﬂ SIL certified communication is only possible within and between High Integrity
controllers, and only between SIL certified applications.

For SIL certified exchange of data between controllers, the following characteristics
of safe peer-to-peer communication over the control network apply:

1. The transferred data is marked with the correct SIL (the application SIL or
lower). For SIL certified exchange of data using IAC, a visible notification of
lower SIL data being used in a higher SIL application is provided.

ﬂ Data is marked with the SIL of the application, or lower. Data with a lower SIL
than the application SIL is also transferred.
2. During the transfer of data, the errors originating from software, hardware, or
other sources, are detected.

If SIL data is transferred over non-SIL media (this occurs when transferring
data between controllers), the applications at both ends add the following
diagnostics to the data transfer:

Verification of contents

b. Verification of sender and receiver address/application
c. Verification of sequence
d. Verification of timing (detection of “old” data)

358 3BSE035980-600 A

Section 3 Communication SIL Communication Using IAC

ﬂ If the Value components of SIL3 variables that are connected to IO are not
accessed in the IEC 61131-3 code blocks or in the FD code blocks, these SIL3
variables are not copied by a background task. They are copied only by the same
task as the other connected and accessed variables.
But, Non-SIL and SIL1-2 variables, whose Value components are not accessed in
the IEC 61131-3 code blocks or in the FD code blocks, are copied by a
background task.

SIL Communication Using IAC

Inter Application Communication (IAC) is the variable communication between
applications. In Control Builder, IAC is implemented using communication
variables, which allow cyclic communication between POUs in different
applications. The communication variables can be used in the IEC 61131-3
code blocks in top level single control modules and programs, and also in the
code blocks in top level diagrams.

IAC is based on the client-server concept. In the server POU, the data is copied-out
through the communication variable, after the execution of the code.

In the client POU, the data is copied-in through the communication variable, before
the execution of the code.

SIL TAC (IAC involving SIL applications in HI controllers) conforms to IEC 61508
and ISO 13849-1 standards.

ﬂ SIL TAC fulfills all the requirements for transferring data over non-SIL media.

The IAC is configured by declaring an out communication variable in one POU and
one or more in communication variables, with the same name, in another POU. The
IAC POUs can exist in the same controller or in another controller (peer-to-peer).

Safe Communication with IAC

For safe communication with IAC, the following safety features need to be
configured while declaring communication variables:

e Unique ID — An integer value that logically connects an in variable to an
out variable. An in variable with a particular Unique ID can read only from an
out variable with the same Unique ID.

3BSE035980-600 A 359

SIL Communication Using IAC Section 3 Communication

Expected SIL — Specifies the expected SIL of the server application. This is
required for the client application to interpret an incoming response. The client
checks that this Expected SIL matches with the SIL in the received response.

Acknowledge Group — Specifies how communication shall be restarted after
the communication goes to ISP and the ISP values get latched. For SIL1-2 or
SIL3 communication, the default value of Acknowledge Group is zero, which
is not allowed in a SIL application. Therefore, it is mandatory to configure the
Acknowledge Group to a value (either auto or a specific group ID) in SIL
applications. The acknowledgement is done by using the CVAckISP

control module in BasicLib.

Additionally, the extracted statuses of a communication variable in a SIL.
application can also be used in the code blocks to control the logic (critical loop).
The statuses are extracted using the function GetCVStatus, available in System
library.

The statuses that can be extracted are:

OPC quality of communication

SIL of the server application

Whether acknowledgment through a group ID (manual acknowledgment) is
required for the communication variable to restart the communication after a
failure

Online Upgrade switch occurring in the server or client (in progress or not)
Simulated server (controller is hardware simulated or Soft Controller) or not

Communication Between Applications

IAC using communication variables is possible between applications in different
controllers and between applications in the same controller, in all the following
cases:

The communicating applications have the same SIL (SIL1-2 or SIL3)

The communication happens from higher SIL (server application) to lower SIL
(client application)

The communication happens from lower SIL (server application) to higher SIL
(client application)

360

3BSE035980-600 A

Section 3 Communication SIL Communication Using IAC

However, the following restrictions apply for communication from lower SIL
(server application) to higher SIL (client application):

* By default, the setting of Compiler Switches prevents this type of
communication (it generates error). In Control Builder, right click the project
name, and select Settings > Compiler Switches.

The two Compiler Switches that define this type of communication are:
— SIL1-2 communication variables in SIL3 applications
— Non-SIL communication variables in SIL1-3 applications

Change these settings to Warning, instead of Error, as required.
Hence, the usage of a signal with lower SIL always results in at least a warning.

* The Expected SIL value, declared for the in variable, must be the correct SIL of
the out communication variable

* The in communication variable with a lower Expected SIL value can only be
used in top level diagrams, with a graphical representation of the variable.
The FD code block in the diagram displays the communication variable with a
lower Expected SIL value, with a distinct color (yellow, in both Offline and
Online modes). The Expected SIL value is also displayed as a label below the
graphical communication variable object.

In the FD code block, it is not allowed to have a textually connected lower SIL
communication variable (the variable connected using Connect dialog or
Connections Editor). Any wrong usage results in compilation error.

* In the Difference Report Before Download, it is mandatory to review and
accept the item, Communication Variables with Lower SIL, separately, at every
download.

ﬂ In normal case, lower SIL signals shall never be used. They may only be used in
exceptional cases, and the usage must follow the restrictions stated in the
Safety Manual.

3BSE035980-600 A 361

SIL Communication using MMSCommLib Section 3 Communication

SIL Communication using MMSCommLib

i
¢

The MMS Communication Library (MMSCommLib) contains control modules
that fulfill all the requirements for transferring data over non-SIL media.

For more information on individual MMS SIL types, see online help or select the
type in Project Explorer and press F1.

A SIL communication link for transferring variable values between controllers
requires basically two things. The first application (in controller A) must have some
sort of a server or encoder module which can store the variable values in a secure
way, before transfer. This can be done by having the control module define a
structured access variable that protects the integrity of these variable values.
However to do so, the access variable must contain not only the IEC61131 variables,
but also necessary security measures for data transmission.

Secondly, the requesting application (in controller B) must have a client or decoder
module which can send cyclically requests to the first application. This control
module must decode the access variable and verify the contents against the safety
measures defined. The control module will then after security checks, hand over the
receiving variable values to the requested client’s application code.

The MMS communication library contains six SIL 2 control modules and two SIL 3
control modules for data transfer between applications running in different
controllers. These control modules may also be used for communication between
applications running in the same controller.

For more information on how to use the control modules, see Control Builder
online help.

SIL Communication with Function Blocks

The MMS communication library contains a number of SIL2 function blocks for
data transfer between applications running in the same SIL?2 certified environment.
These functions may be used for communication of data between applications
running in different controllers, only if both the applications are non-SIL. If one of
the applications is SIL then the communication is restricted to be within one
controller. However in this case the SIL of the transferred data will be degraded to
SIL O (i.e. non-SIL).

362

3BSE035980-600 A

Section 3 Communication SIL Communication using MMSCommLib

The MMSReadHI and MMSDefHI control modules in MMSCommLib allows the
user to set-up SIL3 classified peer-to-peer communication between controllers as
well as between applications within the same controller. These Control Modules can
be used to communicate both within the application, and between non-SIL, SIL1-2
and SIL3 applications.

The function block MMSRead4xxx can be used for communication of data

ﬂ between applications running in different controllers, only if both the applications
are non-SIL. If one of the applications is SIL, then the communication is
restricted to be within one controller.

MMS SIL communication function blocks have a parameter for input and output of
the SIL level.

When using MMS SIL 2 communication function blocks, the SIL level is always

@ degraded to SIL O for all data, both between controllers and between applications
running in the same controller. For safe data transfer between controllers, always
use the MMS SIL control modules.

How to Choose Function Block/Control Modules in MMSCommLib

MMSCommLib contains of function block types and control modules for different
communication purposes. Different communication types have to be used
dependent on controller type and if the communication is between non-SIL
applications, SIL2 applications or between a non-SIL and SIL 2 application. See
Figure 152 how to choose correct function blocks/control modules.

3BSE035980-600 A 363

SIL Communication using MMSCommLib

Section 3 Communication

Non-HI Controller HI Controller HI Controller HI Controller
_ SIL Application SIL Application
MMEDefHI MMSDefHI
Servar Server
Access Variables Access Varables
Mon-HI Controller Maon-HI Controller HI Controller
Men-SIL Application MNon-SIL Application SIL Application 5L Application
MMSRead MMSRead MMSReadH| MMSReadHI
| St MMSReaclCyc chient client
MMSReadCyc MMSConnect
MMSConnect client
MMSWriteDT
client
HI Controller Man-HI Controller HI Controller Non-HI Controller

i

MNon-SIL Application

MMSDef4Bool -

MNon-SIL Application

MMS WL

MMSDef4Dint
MMSDef4Real

Server
Access Variables

SIL1-2 Application

MMSRead4Bool
MMSRead4Dint
MMSRead4Real

client

MMSCaonnect
MMSWriteDT

client

Mon-SIL Application

MMSRead4Bool Mon-SIL Application
] MMSReaddBoallO MMSRead
MMSRead4D!nt MMSReadCyc
MMERead4DintlQ MMSConnect
MMEReadd4Real
MMERead4ReallO client
ClientiServer

¥

Access Variables

SIL1-2 Application

MMEDef4Baal
MMEDefdBoollO
MMSDef4Dint
MMEDef4DIntlO
MMEDef4Real
MMEDef4ReallC

Server

Figure 152. How to choose MMSCommlLib function blocks/control modules.

364

3BSE035980-600 A

Section 3 Communication SIL Communication using MMSCommLib

Parameter Errors (ParError)

If a parameter that is connected to a SIL certified function block or control module
goes outside its range, this is indicated by the output parameter ParError being set
to True. The ParError parameter is connected to interaction windows and
faceplates, where a parameter error is indicated by a red triangle.

ﬂ ParError also checks the values of components of structured variables, such as
ReallO.

You can read more about ParError in the Extended Control Software manual.

V

3BSE035980-600 A 365

SIL Communication using MMSCommLib Section 3 Communication

366 3BSE035980-600 A

Introduction

Section 4 Online Functions

When a controller project is in online mode and test mode, it is possible to inspect
the code while running it, and interact with the code. Furthermore, you can issue
operations to the controller. There are also functions to help the user to find online
errors and to document the control project.

Which online changes and interactions that can be performed depends on the user
permission. All user configuration is made from the Plant Explorer workplace.
See Security on page 195 for more information.

The following functions are available in online mode and test mode:

Online editors, see Online Editors on page 368.

Dynamic display of I/O channels and forcing, see Dynamic Display of I/O
Channels and Forcing on page 372.

Scaling analog signals, see Scaling Analog Signals on page 375.
Unit status and channel status, see Supervising Unit Status on page 375.

Communication variable status, see Supervising Communication Variable
Status on page 379.

Hardware and task status indications, see Status Indications on page 386.
Tasks, see Tasks on page 387.

Interaction windows, see Interaction Windows on page 388.

Status and error messages, see Status and Error Messages on page 390.

Reports and analysis, see Search and Navigation in Online and Test Mode on
page 391.

Project documentation, see Project Documentation on page 395.

3BSE035980-600 A

367

Online Editors

Section 4 Online Functions

Online Editors

From the Project Explorer in online mode, you have access to editors similar to

those in offline mode, such as the application editor, diagram editor, program editor,
hardware configuration editor and function block editor. By using the online editors
the code currently running in the controller(s) can be inspected. Variable values and
parameters can be changed.

You can open one or several new online editor windows from the Project Explorer
by double-clicking on the Program Organization Unit (POU, see Application Types
and Instances on page 43) you want to view. You can also select the POU,

right click, and select Online Editor (or CMD Editor).

MName Current Value Data Type |Attributes |Initial Value [I/0 Address [/0 Descriptio
m— ACB00MStatus HwStatus retain Controller_1.0.0
— BatteryLow 16#0 dword retain
I Customers_Qty 0 dint retain 0
— DoorsOpen_ET 0d0Oh0mO0s0ms time retain
| DoorsOpen_Time 0d0h0mAs0ms time constant [T#5s
L get 0 dint retain
— mms -6 dint retain
— Motor_1 false bool retain false Controller_1.0.11.1."
- Motor_2 false bool retain false Controller_1.0.11.1.2
— Openings_Freq 0 dint retain
« » % Variables 4 Communication Variables A Function Blocks 4 Control Modules Diagrams / I« [
Motor_1
—boo . _ .
Controller_1.0.111.1 ervice_Count Doors:4 Service F
CTU bool
Serviced l——cu Q
—~ bool —{flse}—
E&iet g Openings_Freq
v dint
Openings_Total
—dint
Figure 153. Part of Diagram editor in online mode
368 3BSE035980-600 A

Section 4 Online Functions Online Editors

In online mode there are fewer menu entries in the menu bar than in the offline
editor. Edit and Insert are not available in online mode. The options available in
online menus are also somewhat different from those in offline mode. Columns in
the editor that are dimmed are not accessible.

An online editor window consists of a title row, menu bar, tool bar, and a status bar
at the bottom. The window is split into three panes, as follows.

* In the upper declaration pane the variables and parameters of the POU are
displayed in forms that resemble Excel data sheets. Each sheet, with its tab, has
a unique appearance with respect to the number of columns and their names.
Select a tab to see its sheet, available columns and their names. See also Online
Change of Variable Values in the online help.

e The middle code pane displays the various code blocks in the POU.
* The lower description pane displays descriptions of the types and POUs.

It is possible for the user to enter editor settings in the Setup Editor dialog, using the
Tools > Setup menu.

From the online editor window you can activate the POU editor window using the
Tools > Edit Type menu or the Edit Type button ja .

You can activate an online window for the POU parent via the Tools > View Parent
menu or the View Parent button @ .

See the Control Builder online help for more information about the Setup Editor
@ dialog, Edit Type and View Parent.

To access filter select a column in the grid and select Tools > Filter or Filter button
T .

From the 'Filter' dialog one can decide which rows to display or hide by selecting or
deselecting criteria items. The Criteria items can also be text filtered. An icon in the
column header informs shows an active filter on that column.

Alphabetical sorting of the column is possible by selecting Tools > Sort A to Z or
Sort Z to A, or by clicking the Sort A to Z /Sort Z to A button in toolbar $1 %] .
If column is not selected, Sort A to Z and Sort Z to A are disabled.

In offline Editor, when sorting the parameter column, a warning is presented which
informs that the parameter order might be changed.

3BSE035980-600 A 369

Diagram Editor in Test Mode and Online Mode Section 4 Online Functions

Diagram Editor in Test Mode and Online Mode

In the diagram editor, in Test mode and Online mode, the current values are
displayed in labels. Double-click on label, the Set Value dialog box opens (See
Figure 154).

add:5
1 add | r3
—real [Z5) INt 23] (=l
INZ
r2
——’r@ - ﬂ Set Value

Walue 'I

Figure 154. Set Value dialog

If the data type is bool, right click the displayed value (¢rue or false) and set On or
Off (to toggle the value).

For graphical connections of structured data type, the online value label is not
shown. However, if one of the components is marked with the displayvalue attribute
in the data type editor (see Figure 155), a label is shown in the diagram editor.

i 4 Data Type - Application_L.DataTypeWithDisplayValue l =ChC E
| Editor Edit Miew Insert Tooks Window Help
et bl 3 e Mg AR & TS A, R T A
Mame Data Type _Nlnbutes _Initial V\alue_ISP Value _Descnniun -

T— . —
|cDisplayValue |real .28

=4 U ek R =

Figure 155. Component marked as displayvalue

370 3BSE035980-600 A

Section 4 Online Functions

Diagram Editor in Test Mode and Online Mode

FBT1_16 FBT1_2-7
[~ FBT1 | [~ FBT1
inl outl Iin'I outl
in?2 outZ —Iin2 out2
b d This data type has no displayvalue component b d
FBT1_38 FBT1_4:9
[~ FBT1 [~ FBT1
jin'l ou‘t1|— —|in'| outl
in2 out? [ZE] {in2 out?

This data type has a displayvalue compaonent

Figure 156. Graphical connections of structured data type

For example, in Figure 156, both are graphical connections of structured data type
but only the lower connection has a component marked as displayvalue.

ﬂ The displayvalue attribute can be assigned to only one component in a structured

data type.

It is also possible to assign this attribute through a combination of other attributes
(for example, coldretain displayvalue, nosort retain displayvalue, and so on). In
this case also, only one component can have this type of attribute (with

displayvalue).

To view components in multilevel structures, the attribute displayvalue has to be set
on every level, that is, the attribute has to be set not only for the simple data type to
be viewed, but also for the sub-component the simple data type to be viewed
belongs to, and so on.

To view or change the components of a structured graphical connection, right-click
on the graphical connection and select Show Online Values from the context menu.
The Online Values dialog box opens (see Figure 157).

3BSE035980-600 A

371

Dynamic Display of I/O Channels and Forcing Section 4 Online Functions

Online Values - <FBT1_3_outZ> =]
Companent Data Type Value
FBT1_38 - .
“EBTT =R ~!:BT11_3_0ut2, | =
in] D“H}' | eDisplayVaive red 26
in2 out2| 26— = '

This data type has a displayvalue component

Figure 157. Online Values dialog box

@ It is possible to open several Online Value dialog boxes at the same time.
Tooltips are also available for online labels. This is useful if the online value is
@ large so that it cannot be displayed as a label along with the graphical connection,

or a truncated string value is displayed. Move the cursor over the graphical
connection or the truncated online value label (if it is displayed) to view the
tooltip that shows the whole value.

Dynamic Display of /0 Channels and Forcing

In test mode and online mode, you can use the hardware configuration editor for
dynamic online display of I/O channel values and forcing.

ﬂ The user must have Security Force I/O permission for the application, where the
variable that is connected to the 1/O is declared, to be able to force the 1/0
channel. For more information how to set permission, see the System 800xA
Administration and Security (3BSE037410%).

Forcing of I/O channels is performed in the hardware configuration editor under the
Status tab, or in the POU editor in online mode. All I/O channels that can be
connected to a variable in an application can also be forced in online mode, except
for channels such as UnitStatus on each I/O unit and A/lUnitStatus on the current

372 3BSE035980-600 A

Section 4 Online Functions Dynamic Display of I/O Channels and Forcing

®

=2 ©

controller (see Supervising Unit Status on page 375).

If the application is SIL certified and runs in a High Integrity controller, /O
channels cannot be forced from Control Builder.

Normally, only channels with variable connections to application programs can be
forced. However, if no variable is connected, you have to change the parameter
Copy unconnected channels under the Settings tab for the current controller to
obtain a status update. The I/O channels you can copy are None, Inputs or Outputs,
or both the Inputs and Outputs.

When selected, the unconnected I/O channels are copied once a second so their
status is available in the Status tab like normally connected I/O channels.

Copy unconnected channels is for test purposes only and should never be selected
for a controller in a running plant, since it will increase CPU load.

To be able to force unconnected I/O channels, the user must have Security Force
I/O permission for the hardware unit with the unconnected 1/O channels. For
more information how to set permission, see the System S800xA Administration
and Security (3BSE037410%).

Application programs requiring information about forcing and forced values, can
use the I/O data types when connecting variables to I/O channels. In this way, you
can use the Forced component (which indicates if the I/O channel is forced) and the
10Value component (contains the value of the I/O channel) of the I/O data type.

When a channel is forced, all copying between the I/O value and the application
value stops. The forced value is different for inputs and outputs. For inputs, forcing
changes the variable value sent to the application. For outputs, forcing changes the
physical I/O channel value. In this way, the application can see both the Variable
(application) value and the Channel (1/0) value.

Forcing can be activated or deactivated using a check box in the Forced column for
the channel. The background of the forced Variable Value changes to yellow to
indicate forcing. To change the channel value, type in a new value for the Variable
Value. This value overrides the values for the channel.

3BSE035980-600 A 373

Forcing I/O Channels in SIL Applications Section 4 Online Functions

Channel Channel “alug|F orced “ariable “WalueMariable 2
[X0.11.2.1 false [x] rue ShopDoors_ST.Mormal.Photo_Cell
[x0.11.2.2 O
[<0.11.2.3 O
044 7 4 — bt
Seftings »_Connections _Froperties » Status A_Un]
Row 1, Col 3

Figure 158. I/O channel with the variable Photo_Cell forced to true.

@ More information is given in Control Builder the online help. Search the Index
for “1/0”.

Forcing I/O Channels in SIL Applications

In SIL applications, forcing I/O channels are restricted. For each SIL application,
you can define the maximum number of I/O channels that can be set in forced state.
This setting decides the maximum number of connected I/O channels that can be
forced at the same time.

To set maximum number of forced I/O channels

1. In Project Explorer, right-click the SIL application and select Properties >
Force. A ‘Force Properties’ dialog open.

Maimurm nurmber af Forces I |
K I Cancel |

Figure 159. The ‘Force Properties’ dialog for setting the maximum number of
forced I/O channels in a SIL application.

|'F|:|r|:e for AppEdital_a

2. Set the maximum number of forced I/O channels and click OK.

The new value for the Maximum number of forces must not be less than the

@ actual number of forced I/O channels in the running application. If the new value
is less, a warning appears during download, and continuing the download leads to
a controller shutdown.

374 3BSE035980-600 A

Section 4 Online Functions Scaling Analog Signals

®

Besides the Access Enable digital input signal, there are also two other signals
that can be connected to the SM8XX module. One digital output signal for
indicating that I/O channels are forced (normally a lamp) and one digital output
signal for resetting all forced I/O channels (normally via a switch).

It is possible to release all forced I/O channels from the code by using the
function block type ForcedSignals or the control module type ForcedSignalsM.

For more information on how to configure the ForcedSignals(M) types, see
corresponding online help.

The ForcedSignals types are used to reset forced I/O signals in both SIL1-2 and
SIL3 applications. Whereas, the ForcedSignalsM control module is used to reset
forced I/0 signals in SIL1-2 applications only. If a SIL3 application exists, the
ForcedSignals function block should be executed from SIL3 application to reset
both SIL1-2 and SIL3 forces.

Scaling Analog Signals

®
®

It is possible to temporarily change the scaling values for analog signals in online
mode.

If scaling values for an analog signal are changed in online mode, the change will
be lost if you enter offline mode, make configuration changes and then perform a
download.

It is not recommended to change the scaling values .Min, .Max, or .Inverted of an
analog signal from the code in a SIL3 application. Changing the scaling values
might lead to a safety shutdown and a compiler warning is generated.

Supervising Unit Status

Each hardware unit has a UnitStatus channel that describes the current error status
of the unit. Both dynamic and static warnings and errors are collected in this
channel.

The data type, for the variable connected to the UnitStatus channel of the hardware
unit, can be either of dint data type or of HwStatus data type. If a variable of dint

3BSE035980-600 A 375

Find Out What is Wrong by Using HWStatus Section 4 Online Functions

data type is connected to the UnitStatus channel, the possible unit status values are:
0 (OK), 1 (Error), or 2 (Warning).

The HwStatus data type contains the same information as shown under the

Unit Status tab of the hardware configuration editor, that is, unit status information
and status message acknowledgement functions. These components will be
available by using the HwStatus data type as a variable connection to the UnitStatus
channel.

In the example below, see Figure 160, the DO814UnitStatus variable of dint data
type is connected to UnitStatus of DO814 (unit status is 0=OK!). The
DO810UnitStatus variable of HWStatus type is connected to UnitStatus of DI810
(HWState is 1, that is, unit status is Error).

I
Iframe Current “alue Data Type Attributes |Initial YValue |70 Address I/0 Description
— DOS14UnitStatus 0 dint retain Contraller_1.0.11.1.19 |Status of DOF14
B DI310UnitStatus HwStatus retain
— HwState 1 dint retain
— HwStateChangeTime 2004-08-20-11:58:41.407 |date_and_time |retain
— ErrorsAndWarnings 1684 dward retain
— ExtendedStatus 16#0 dword retain
— LatchedErrorsAndWarnings [1684 dward retain
'— LatchedExtendedStatus 16#0 dword retain
Variables 4 Function Blocks 7 |

Figure 160. The UnitStatus connection gives access to the status of individual
hardware units.

It is not possible to connect the UnitStatus channel on the hardware unit to a
variable in a SIL.1-2 or SIL3 application and obtain the status. However, the
UnitStatus channel can be used in a HI controller configuration, but connect the
channel only to a variable in a Non-SIL application.

Find Out What is Wrong by Using HWStatus

You cannot find out exactly what is wrong by using the simple data type dint, only
that something is wrong. Table 11 on page 125 shows that, in addition to using the
dint type, you can also use the data type HWStatus. By using the structured data type
HWStatus, instead of the simple data type dint, you may also find out what is wrong
with the unit.

376

3BSE035980-600 A

Section 4 Online Functions AllUnitStatus

Among other things, the structured data type HWStatus contains the component
ErrorsAndWarnings, which contains a bit pattern, representing the different errors
that may occur in the unit. Each bit in the word represents a unique error.

Figure 161 illustrate how the component ErrorsAndWarnings in HWStatus can be
accessed.

For example, the word takes the value of 16#80020000 (hexadecimal notation), if
the CPU battery suffers from low voltage.

ﬂ For more information on error codes, see Control Builder online help.

By combining AC800MStatus.ErrorsAndWarnings with the bit pattern 80020000"
and using the AND operator, it is possible to trigger an error (or warning) from the
hardware unit, together with the specific error code for “low CPU battery voltage”.
The result is assigned to the boolean variable BatteryLow. The ST code for this
condition is as follows:

(*Set the Boolean variable "BatteryLow" when AC 800M has low
battery*)

BatteryLow := (AC800MStatus.ErrorsAndWarnings AND
16#80020000) <>0;

In online mode it will be displayed as below in Figure 161.

Set the Boolean variable "BatteryLow" when AC 800M ha= low battery
vl = (ACE00MStatus ErrorsindWarnings(16#80020000] AND 16450020000) <3 0

v

Y Code / [3|

Figure 161. The variable ACS00MStatus (of HWStatus type) has been used to
access the component ErrorsAndWarnings.

AllUnitStatus

Each controller hardware object has one channel called AllUnitStatus, containing
the summarized status of all hardware units added to the controller. The most
serious unit status (dint) is forwarded up to the controller object, that is, the unit
status of the controller is error if one unit has an error, and one has a warning.

1. Typed in ST editor in hexadecimal notation as 16#80020000.

3BSE035980-600 A 377

Binary Channels Section 4 Online Functions

AllUnitStatus can be used in the same way as UnitStatus, that is, the variable
connected to AllUnitStatus can be of dint data type or of HWStatus data type.

[
IlChanneI MNarme Type |“ariable I/0 Description e
||IWD AllUnitZtatus |dint [ShopDoors_ZT.Mormal HardwareStatus [Status of all hardware units

| v
[Seftings »_Connections 4 Unit Status /7 |

Row 1, Col 3

Figure 162. The AllUnitStatus connection gives access to the status of all units for a
controller.

The variable connected to AllUnitStatus can be used in the application program, to
write different conditions depending on status value (see UnitStatus Example
Figure 161).

Binary Channels

Access All Inputs and All Outputs

Some units return a binary value, as a number of inputs divided on 8 or 16 channels.
Typically, this applies to different types of sensors. These values can be collected
via an overall channel, namely “All input™. This means that, instead of reading all
variable values from each channel, one variable can be connected to the channel
“All inputs” (IWO0, see Table 11 on page 125), provided the variable is of dword data
type. This technique can also be used for digital outputs. However, for digital output
units, you must choose either to connect all individual channels or connect one
variable to the channel “All outputs” (QWO, see Table 11 on page 125). You cannot
use both methods simultaneously.

ISP and OSP values are not set for variables connected to All Inputs/All Outputs)

ISP/OSP (Input/Qutput Set as Predetermined) will not work when using the
channel "All Inputs" or "All Outputs". 1/O values will be lost in an error situation.

Check Channel Status

There are two ways to check the channel status for an I/O unit. You can either use
the structured data type BoollO, that is, read the component Status via BoollO, or
you can connect a variable of type dword to the “Channel status” (IWO0, see Table 11
on page 125).

378

3BSE035980-600 A

Section 4 Online Functions Supervising Communication Variable Status

The component Status in BoollO only gives you the status for that connected
channel, whereas a variable of type dword that is connected to channel “Channel
status” will read the status for all channels, given with bit O equivalent to channel 1,
bit 1 equivalent to channel 2, etc. However, a variable of type BoollO that is
connected to each channel contains more information, since the component Status is
a 32 bit dword, whereas AllChannel is a 16 bit dword. Connecting each channel to
BoollO gives more information, but also more variables to connect.

Connecting a variable to AllChannel will give you less information, but only one
variable to connect.

channel. You must connect BoollO. For information about connecting structured
data types to 10 channels, see I/O Data Types on page 124 and the variable
example given in Figure 37 on page 124.

@ Do not try to connect the component Status (inside BoollO) directly to the

Supervising Communication Variable Status

There are two methods to supervise the status of communication variables:

* Using the :status notation
* Using the GetCVStatus function

Supervising Communication Variable Using: Status Notation

For communication variables in non-SIL applications, the status can be supervised
using the :status notation.

For example:
dwordl:=CVMain:status;

In this example, the :stafus notation is used to obtain the status of the
communication variable, CVMain. The status appears as dword.

See also, Understanding the Complete Status Code on page 383.

ﬂ The :status notation shall not be used if the communication variable is in SIL1-2
or SIL3 application.

3BSE035980-600 A 379

Supervising Communication Variable Using GetCVStatus Section 4 Online Functions

Supervising Communication Variable Using GetCVStatus

For communication variables in SIL1-2, SIL3 or non-SIL applications, the status
can be supervised using the function, GetCVStatus, which is available in the System
library. But for non-SIL, the :status method has better performance than the
GetCVStatus function.

380 3BSE035980-600 A

Section 4 Online Functions Supervising Communication Variable Using GetCVStatus

The GetCVStatus function accepts the communication variable as input, and
provides the complete status and extracted statuses through different output
parameters. These output parameters for extracted statuses can be connected to
variables to control the logic (critical loop) in the SIL code.

The available parameters for extracting the status are:

Quality — (dword) — The OPC quality of communication.
For GOOD, this parameter returns /6#CO.
For BAD, this parameter returns 0.

ServerSIL — (dint) — The SIL of the server application (the application that
holds the out communication variable).

If the server is SIL3, this parameter returns 3.

If the server is SIL1-2, this parameter returns 2.

If the controller that runs the server application is either hardware simulated or
Soft Controller, this parameter returns the Expected SIL of the server, and not
the actual SIL.

ManualA ckRequired — (bool) — Whether manual acknowledgment is required
for the communication variable to restart the communication after failure.
This parameter returns true if manual acknowledgment is required, else it
returns false.

ServerInOLU — (bool) — Whether an online upgrade switch of the server is
in progress, or whether the online upgrade switch is in progress on client
controller (where the in variable is present).

This parameter returns true if an online upgrade of the server or client is

in progress, else it returns false.

ServerIsSimulated — (bool) — Whether the controller that runs the server
application is either hardware simulated or Soft Controller.

This parameter returns true if the controller that runs the server application is
either hardware simulated controller or Soft Controller. Otherwise, it returns
false.

InternalStatus (Internal Status Codes)

Status WaitingTolnit (16#20) is indicated in the Quality during initialization. If
the server is SIL2/SIL3 then external clients indicates WaitingTolnit until three
successful frames have been received. If the server is non-SIL, then external
clients indicates WaitingTolnit until the first successful frame has been

3BSE035980-600 A

381

Supervising Communication Variable Using GetCVStatus Section 4 Online Functions

received. For internal clients WaitingTolnit is indicated until the server has
been downloaded. WaitingTolnit is used for first download, cold download and
after power-fail/short reset.

382 3BSE035980-600 A

Section 4 Online Functions Understanding the Complete Status Code

Understanding the Complete Status Code
The displayed complete status code of a communication variable depends on:
e The error (if any)

* The discrete values for the following factors:
— Quality of communication
— Server is simulated or not
— Online upgrade in the server
— SIL of the server
— Manual acknowledgment is required or not, after error is generated

To understand the complete status code, first convert it from hexadecimal to binary
(32 bits).

Table 28 describes the bit-wise description of the used bits in the binary status of
communication variable. Bit 0 is the least significant bit.

Table 28. Bit-wise description of communication variable status in binary code

Bit Description

Bit 5 Not initialized. This bit is set in the following cases:
J Initial download of application

J Cold download of application

J Restart of application after power-fail

J Restart of application after short-reset

This is reset when:

. 3 frames are validated with success when
ExpectedSIL is SIL2/SIL3

. First frame is received when ExpectedSIL is non-SIL
e OQOut variable is downloaded for internal IAC

Bit 6 and Bit 7 Quality of OPC (711 - GOOD, 00 - BAD)

Bit 8 The server is hardware simulated or it is a Soft Controller

Bit 9 Online upgrade switchover is happening in the server

3BSE035980-600 A 383

Understanding the Complete Status Code

Table 28. Bit-wise description of communication variable status in binary code

Bit

Description

Bit 10 and Bit 11

SIL of the server
11 represents SIL3
If Bit 10 is 0 and Bit 11 is 1, it represents SIL2)

Bit 12

Manual acknowledgment is required to restart
communication after error generation.

Bits that represent communication errors(!)

Bit 16

The values are not communicated in time, but no timeout
have occurred. The OPC quality bits are still good (11).
This is used for external communication using IAC.

Bit 17

The values are not communicated in time, and a timeout
has occurred. The OPC quality bits are bad (00). This is
used for external communication using IAC.

Both Bit 16 and
Bit 17 are set

The IP address has not been resolved for the
communication variable.

Bit 18

The type does not match the type of the corresponding
out variable. This is used for both internal and external
communication using IAC.

Both Bit 16 and
Bit 18 are set

The corresponding out-variable is declared, but not
downloaded yet. This status is only relevant for internal
IAC and occurs only when the out variable has existed
and then has been removed.

Both Bit 17 and
Bit 18 are set

The communication is not configured.

Bit 16, Bit 17, and
Bit 18 are set

The task where the corresponding out variable is
connected is not running. This is only relevant for internal
IAC.

Bit 19

General error code

Bit 16 and Bit 19
are set

A fault in the safety frame verification was detected. This
is only used in HI controllers.

384

3BSE035980-600 A

Section 4 Online Functions

Section 4 Online Functions Understanding the Complete Status Code

Table 28. Bit-wise description of communication variable status in binary code

Bit Description

Bits that represent protocol handling errors(")

Bit 27 Wrong message type in the response message.

Bit 25 and Bit 27 | The out-variable cannot be found.
are set

Bit 24, Bit 25, and | The Initiate request was unsuccessful.
Bit 27 are set

Bit 26 and Bit 27 | The protocol version between client and server does not
are set match.

Bit 24, Bit 26, and | The heap is full.
Bit 27 are set

Bit 25, Bit 26, and | Permanent MMS error
Bit 27 are set

Bits 24 to 31are | Unspecified error
set

(1) The status represented by a single bit is different from the status when this bit is set as a
combination with other bits, in the same error category.

3BSE035980-600 A 385

Status Indications

Section 4 Online Functions

Status Indications
ﬂ Status indications are not displayed in Test mode.

In the Project Explorer, dynamic status indications for the hardware units and tasks
are displayed as shown below.

Warning 4] 2 D&

Error = @ 0 PMEED / TPE30

= (4 Controllers
EI ‘J Controller 1 (172.16.84.124)
@ Connected Applications
Il Connected Libraries
|_—__|) Hardware ACE00M

CF Reader
Ethernet
Ethernet
Com

Eo TR LN o]

Com
S 11 ModuleBus
- ﬂ 1 Diog14

OK B Tasks
- S Access Variables

Figure 163. Status indications of hardware and tasks in Project Explorer.

OK
No errors or warnings.

Error! A

Hardware objects are marked with a red triangle icon if an error is detected in
the hardware, for example, if a hardware unit is missing.

The task is marked with a red triangle when a serious error has occurred, for
example, when a task is aborted as a consequence of too long execution time.
The error is described in the Remark field of the Task Properties dialog. See
Task Abortion on page 183 for more information.

Warning! @

Hardware objects are marked with a warning icon if there is an overflow or
underflow at an analog channel, if the forcing of a channel is detected, or if an
unacknowledged fault disappears. The task icon is marked with a warning icon

386

3BSE035980-600 A

Section 4 Online Functions Acknowledge Errors and Warnings

if the task is not used (“Not in use”), in the case of overload, or when the task is
in debug mode and the task is halted, that is, non-cyclic mode (see Debug
Mode in the System 800xA Control AC 800M Getting Started (3BSE041880%).
The warning is described in the Remark field of the Task Properties dialog. See
Task Control on page 165 for more information about tasks.

An error has higher priority than a warning, for example, an error is indicated if an
error occurs at the same time as channel forcing is detected.

A collapsed object folder shows status indications for all underlying objects, that is,
status indication is always forwarded up to the controller icon. It is not until an
object folder is fully expanded that you can be sure that status indications are shown
next to the unit they actually belong to. If, for example, a single task has a warning,
both its task folder icon and its controller icon are marked with a warning. Status
indications are displayed up to the controller level only.

Acknowledge Errors and Warnings

ﬂ Warnings concerning tasks do not have to be acknowledged.

Tasks

®

All hardware unit errors and warnings have to be acknowledged by the user. Use the
status tab in the hardware editor to obtain information about the error or the
warning.

There is a possibility to acknowledge errors and warnings for all hardware
subobjects by right click the main hardware object (Hardware AC 800M in
Figure 163) and select Clear Latched Unit Status.

See Control Builder online help for more information about dynamic online display
of I/O channel values and forcing and how to acknowledge errors and warnings.

Changes to SIL applications are not allowed in online mode.

The SetPriority function does not work in a High Integrity controller.

Use the Task Overview dialog to display task information in online mode.

3BSE035980-600 A 387

Interaction Windows Section 4 Online Functions

For each task, you can make changes to the Requested Interval Time, Offset,
Priority and Latency using the Task Properties dialog. The maximum encountered
intervals and the maximum encountered execution time can be reset.

It is not possible to change the task priority to/from 0 (Time-Critical priority) in
online mode.

Debug mode can be used, but for debugging only. Functions based on the real-time
clock (PID controllers, timers etc.) do not work properly when debug mode is used
(also, see Debug Mode in the System 800xA Control AC 800M Getting Started
(3BSE041880%).

2 If debug mode is used in a running plant, task execution will be stopped.

®
9

You can also select Always update output signals last in execution, or select
Always update output signals first in next execution.

Always update output signals first in next execution is not allowed for SIL3
tasks.

For further basic information about tasks, see Task Control on page 165. For
Latency information, see Latency Supervision on page 181. See also Control
Builder online help for how to carry out task changes.

Interaction Windows

An interaction window contains the graphics of a control module and is only
accessible in online mode. An interaction window may contain both supervisory
features, such as signal status, and interactive features, such as push buttons. The
window can be accessed from:

* A control module in the Project Explorer.

* A function block in the Project Explorer. This is, however, only available under
the condition that at least one control module exists and is connected to the
selected function block type. By default, the first control module in the list will
appear in the interaction window (this can be changed in offline-mode by right-
clicking on the type name in the Project Explorer and selecting Properties>
Set Interaction Window Control Module).

388

3BSE035980-600 A

Section 4 Online Functions

Interaction Windows

* An online editor containing a control module.

* An online editor containing a function block (compare with item 2 above).

* From interaction window objects in a control module.

ﬁ Faceplate =& P

= Al
MotorValveM
Manual

e @ A X
= @ ¥

rOut signals
B Open
B Stop
B4 Close
[/ Pulse out
Feedbacks
B Opened
B4 Closed

rOverrides

EINENE]

[/ Error B
FB time: | OhOm5s

ﬁ InfoPar I. == ﬁl

#

—Auto
B4 Auto Open
[Auto Close
[Auto Stop

—Panel

] Panel mode
(] Panel Open
[Panel Close
B4 Panel Stop

rLocal

[Local mode

rOthers
[Alarm dis
B Object test
FBConfig

1

——————

Figure 164. The left window is an interaction window activated from an application
window interaction object. The right window (supervision only) appears after
clicking the info interaction window button.

3BSE035980-600 A

389

Status and Error Messages Section 4 Online Functions

Status and Error Messages

There are function block types, control module types and functions that contain a
parameter named Status. The Status parameter shows, in online mode and in test
mode, a status code that correspond to a status message. The status code changes
depending on the current state of the function block, control module or function.

There are function-specific status codes that are used within its range of application
only, for example, communication-specific status codes. Some status codes are
general and are used for most function blocks and control modules, and for
functions with a Status parameter.

The different status messages are described in Control Builder online help.

Function block types and control module types with a Status parameter also have an
Error parameter. The Error parameter is set to true if the Status parameter < 0, for
example, if Status is -35 (Maximum size limit has been exceeded). Status codes >1
is used as warnings and do not set the Error parameter.

MMEConulih MMERead
Reqr---mo-ommsmoooooees {falzd - Reg
1=<Id Td: Ld-=1
B [[false] - N
Error[-[falsel----------------mommmmo oo oo e Error
Stacus L Status
lecVarName— ——VarName[1] | Varlames»1
lespd— & Rd[l]]]
Figure 165. A function block with Status parameter and Error parameter (operation
successful=1).
The Error and Status parameters can be used in the application program, for
example, a condition can be written in the program for a specific status code.
390 3BSE035980-600 A

Section 4 Online Functions Search and Navigation in Online and Test Mode

Search and Navigation in Online and Test Mode

The Search and Navigation tool can be used to conduct simple searches and iterative
searches when the project is in Online mode or Test mode.

This functionality makes it possible to search for input/output of a certain signal as a
result of a single search, irrespective of name changes at parameter connections.
This means all information concerning reading and writing from the whole
Application/Controller(s) about a signal is found in the search.

The appearance of the Search and Navigation dialog in the Online mode and Test
mode depends on the setting of the following options in the Search and Navigation
Settings dialog box:

* Allow editing of the Search Fields in Online/Test Mode
e Iterative searches in Online/Test Mode

By default, the first option above is not set and the second option is set. See Search
and Navigation Settings on page 208.

Iterative Search

In Online mode or Test mode, if the option Iterative searches in Online/Test Mode
is set (the checkbox is checked) in the Search and Navigation Settings dialog, the
iterative search hits are directly presented in one pane — the References pane.

See Figure 166.

3BSE035980-600 A 391

Search and Navigation in Online and Test Mode Section 4 Online Functions

-

& Search and Navigation l =ENCN X
Search
Search
For: ACBOOMStatus - -
Rebuild
In: Applications.Application_1.Diagram2 -
Fitter Result
ey: N v/ [Aways OnTop
References
= :.\l ShopDoors_FD
=@, Applications
: BEB Application_1
BE Diagram2
i~& Code, bool32todint(1).Bool Struct
e ST(1,45)
=4 Cortrollers
E_U Controller_1
Bg o
L / i)
ACB00MStatus - ShopDoors_FD Applications Application_1.Diagram2 Mo of Ref Hits :3

Figure 166. Iterative search results for the variable ACS00MStatus in Online mode

In Online mode or Test mode, if the option Iterative searches in Online/Test Mode
is not set (the checkbox is not checked) in the Search and Navigation Settings
dialog, the search hits are presented in two panes—the Symbol and Definition pane,
and the References pane. In this case, right click the symbol and select Iterative
Search to start its iterative search. See Figure 167.

It is also possible to search for another item in the window and obtain the new
results.

392 3BSE035980-600 A

Section 4 Online Functions Search and Navigation in Online and Test Mode

-

& Search and Navigation l =N X

Search Search Options
. Search
For: ACB00MStatus - @ Match whole word
) Match prefix Rebuild
In: Applications.Application_1.Diagram2 - @) Match substring
e Maz no of Hits : 100
oy (mter) * Do
Symbol Definition References

E-#] ShopDoors_FD

[| ACBDOMStatus | Sh

Application_1
Go To Definition in Editor E Diagram2

Go To Definition in Project Explorer

ntrollers
o Controller_1

Report ...

ACB00MStatus : ShopDoors_FD Applications Application_1.Diagram2 Mo of Ref His .3

]

Figure 167. Search results for the variable ACS00MStatus in Online mode, with the
option for Iterative Search

After the Iterative Search option is selected (see Figure 167), the search results for
the selected symbol are replaced by new search results in the References pane,
which shows the header as References (iterative search).

General Considerations for Search in Online/Test Mode
The tree view in the References pane shows where the signal is read or written.

It is possible to navigate from the Search and Navigation dialog to the references of
a found symbol by double clicking a reference. Then a suitable editor is displayed
and the symbol is highlighted in the editor.

3BSE035980-600 A 393

Search and Navigation in Online and Test Mode Section 4 Online Functions

The references are followed both upwards towards its first definition in a parent
node, and downwards to the leaves of the project structure, in order to cover all
usage. Every time a reference is followed, there is a new query to the search
database. By means of those user hidden repetitive queries, all relevant information
is collected from a single search.

There are following differences in online/test mode (compared to offline mode):

* Search In: drop-downs can only contain search paths for objects that you can
see in online/test mode, for example, libraries cannot be searched.

» References only show information concerning where the symbol is used, as can
be seen in online and test mode.The references tree (i.e. the tree presented in
the references pane of the Search and Navigation dialog) presents instance
paths in online mode and test mode.

* Itis only possible to navigate to online editors and to the Project Constant
dialog. The online editors that can be navigated to are the following:

POU editor

Connection editor

Control Module Diagram editor
Hardware configuration editor
Access variables editor
Diagram editor

In online mode, it is also possible to navigate from the Search and Navigation
function to the corresponding object in the Project Explorer.

394

3BSE035980-600 A

Section 4 Online Functions Project Documentation

Project Documentation

Project Documentation in online mode is used to document (part of) the application
tree in online or test mode. You can select any application object, set the “tree
depth” in relation to the selected object, to document part of the tree only. You can
also use filter conditions for a more specific search. Unlike the offline mode, the
values of variables, parameters, etc. are included. For example, it is possible to filter
out all coldretain variables and parameters in an application. The output is a
Microsoft Word file, hence Microsoft Office must be installed.

ﬂ All project documentation will be connected to a standard template.

1. Enter online or test mode and select an application object in Project Explorer.

2. Select File > Documentation Online... to open the Project Documentation
dialog.

Documentation Online g|

Document: - Application_1

Mame: CAABE Industrial IT Data\Engineer |

(O Template:

(®) Format; A4 Portrait v

Froject Explarer Tree Levels
O &l Levels

(®) Current level and 1 B sublevels

Filter Options

[Include only instance named:

Include only instances of type named:

E=ample: *mator®, Regulator] ¥3

[ok][cancel |[Hep |

Figure 168. The Documentation Online dialog.

3BSE035980-600 A 395

Project Documentation Section 4 Online Functions

3. See Control Builder online help for information about dialog settings and
selections.

ﬂ See Project Documentation on page 253 for information about Project
Documentation in offline mode.

396 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

This section provides important information for maintenance and trouble-shooting
Control Builder products. It mainly advises you on how to maintain your system,
and how to collect information from a malfunctioning control system. The latter
information is particularly valuable if your supplier’s service department is to be
involved.

Introduction

Software maintenance and trouble-shooting includes the following activities:

Remote Desktop Connection Running Control Builder on Terminal Server on
page 398 describes how to start and run the Control Builder Professional as a
terminal session on a Terminal Server.

Backup and Restore on page 401 gives a short overview of backup and restore
of an 800xA system. For detailed instructions on how to upgrade or restore a
complete system, see 800xA system documentation.

Migration on page 409 describes how to migrate from Compact Control
Builder to 800xA and how to migrate from 800xA to Compact Control Builder,
within same system version.

Import and Export on page 413 describes how to import and export libraries,
programs and individual objects.

About Library Import/Export on page 418 points out a number of things that
are of importance from a maintenance perspective.

Controller Configuration on page 422 describes how to configure handling and
logging of system alarms and events, using the Error Handler.

Error case handling when I/O Channels have returned to OSP on page 446 lists
the requirements, preparations and the steps of the process.

3BSE035980-600 A

397

Running Control Builder on Terminal Server Section 5 Maintenance and Trouble-Shooting

* Trouble-Shooting on page 446 lists a number of error symptoms, and suggest
actions upon these.

» Error Reports on page 493 describes how to write a complete error report, so
that the support engineers get a complete picture of an error situation.

Running Control Builder on Terminal Server

It is possible to connect to a terminal server and run the Control Builder
Professional as a terminal session, by using Windows standard Remote Desktop
Connection. All you need is network access and permissions to connect to the other
computer.

There are some restrictions when using Control Builder Professional as a terminal
session:

. A maximum of 10 concurrent Control Builder sessions can run on the terminal
server.

* There can be only one active Control Builder session per interactive Windows
user.

. It is not recommended to run a Soft Controller on the terminal server.

Characteristics of Control Builder as Terminal Server

There are some things that differ a Control Builder terminal session from a locally
executing Control Builder session.

MMS Process Number

The MMS process number of the Control Builder process is usually 1. It will still be
1 for a Control Builder session that is executing locally on the terminal server
console. For a remote Control Builder session the MMS process number will be in
the interval of 31-40. The MMS process number will be 31 for the first remote
Control Builder session, 32 for the second and so on.

398

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Characteristics of Control Builder as Terminal Server

The MMS process number can be shown, for example, by selecting Help > About
Control Builder M Professional in the Control Builder.

#% about Control Builder M Professional

|IT

Industria
Control Builder M Professional, Ve

System Version 5.0
|n order to use products, software licenses

MMS process number 31
System identity: 172.16.20.13:31 /

86.6% of memory is free.

Figure 169. About Control Builder M Professional dialog

3BSE035980-600 A 399

Characteristics of Control Builder as Terminal Server Section 5 Maintenance and Trouble-Shooting

Working Folder

In a standard installation of Control Builder the working folder is C:\ABB Industrial
IT Data\Engineer IT Data\Control Builder M Professional. For each remote Control
Builder session .. \Terminal Sessions\” Userld” will be added to that path. “Userld”
is the user id of the interactive Windows user logged on to the terminal server. This
is only valid for remote sessions. A Control Builder running on the terminal server
console will use the normal working folder.

= %= Local Disk ()
[=1 IL) ABE Industrial IT Daka
I Control IT Data
= IZ) Engineer IT Data
L) Compact Control Builder &C S00M Log file folder

=1 123 Control Builder M Professional for locally running
=D HWLibraV Control Builder
I LogFiles on terminal server
[Projects console
I Reports

i) ReportTemplates
[=1 IcZa Terminal Sessions
B) 151
I Hw'Libraries

i1 LogFiles
&) Projects | —___ Log file folders

for sessions

B = 152
i HWLibrarV TS1 and TS2
L) LogFiles

I Projects

Figure 170. TS1 and TS2 users added as Control Builder terminal sessions.

ﬂ The working folder can be changed by using the Control Builder Setup Wizard. A
remote Control Builder session will then add .. \Terminal Sessions\” Userld” to
the specified file path of Working Folder for File Locations, in the Setup Wizard.

400 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Backup and Restore

Note that each Control Builder terminal session has a LogFiles folder, where the log
files are saved for that particular session. Log files for a Control Builder running
locally on the terminal server will be found in the LogFiles folder under the Control
Builder M Professional folder.

Remote Session Indication

When dealing with support engineers it is important to know if the Control Builder
is running as a remote session or as a local session A small visual indication
together with the user name will be shown in the status bar of the Control Builder, if
it is running as a remote session.

—l

» ControllerHI _HIOL
» Controller MIOL1
.nished

Bemote session -
indication \\\Message £ |

ﬁj Terminal Server &

Figure 171. Remote session indication in Control Builder

Backup and Restore

Introduction

The Backup function prevents data loss if a complete system crash should occur.
The Backup function saves the complete system on a local disk.

ﬂ For instructions on how to perform a backup or restore, see the System 800xA
Tools (2PAA101888%*). Coldretain, structure and domain files are included at
backup/restore.

For backup of individual projects, applications, libraries, etc., the Import/Export
function should be used, since this function handles individual files. The
Import/Export function is described in Import and Export on page 413.

3BSE035980-600 A 401

Files for Separate Backup Section 5 Maintenance and Trouble-Shooting

Files for Separate Backup

There are some settings files that are stored locally. These need to be backed up
separately:

* OPC Server Configuration and System Setup Files
The OPC Server stores configuration files (* . c£g) and system setup files
(*.sys) on local disc. These files are stored in the OPC server working
directory and need to be manually copied to safe media on a regular basis. See
the AC 800M OPC Server (3BSE035983*) for more information.

* Control Builder Settings File
Each Control Builder client saves its settings in the file systemsetup. sys.
This file is saved on local disk, in the Control Builder working directory, and
has to be manually backed up to safe media on a regular basis.

Remove and Add FSD Server Files

Cold retain files, and files associated with Control aspects, such as applications,
controllers and projects, are stored in the File Set Distribution (FSD) server in
800xA. The FSD tool makes it possible to view, add, extract and delete files that are
stored in the FSD server.

This tool should be used with extreme caution, since a mistake when deleting or
@ changing files in the FSD server might cause serious problems.

To start the tool, go to the Windows Start-menu and select

ABB Start Menu > Engineering > Ultilities > FSD Tool.

Some examples of how to use the tool:

» Extract files and store them on local disk for further examination.

* Replace lost or corrupted files.

For more detailed information on the tool, see its online help, which is opened
@ from inside the tool.

Compiler Output File Helper

The Compiler Output File Helper tool is able to restore compiler output files from a
folder on a disc to an 800xA Aspect Server. All files belonging to a control builder

402 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Compiler Output File Helper

project, or all files belonging to one or many controllers of a project, can be restored
in one single operation. This function is valuable in some upgrade use cases as well
as when the simulate hardware function is used.

The FSD Tool is also able to extract and restore compiler output files. The
difference is that Compiler Output File Helper tool can extract all needed files in
one operation, which is more convenient to use.

One situation when the tool is valuable is when a system will be upgraded to a new
system version. Then the production system is backed up and restored on another
PC using the new system version. The upgrade process might also be performed in
another location, that is an office, and can take some time to accomplish. The
original production system is kept running and connected to the controllers until the
upgrade process is finished. If the maintenance personal is forced to change and
download an Application or Controllers Configuration, then the compiler output
files is stored in the original production system. Here the tool can be used in order to
extract the compiler output files, of correct version, on a disc. Later on, the tool can
be used in order to restore the files into the new upgraded system.

The CompilerOutputFileHelper tool can be opened from Engineering &
Development\Control Builder M\Tools\CompilerOutputFileHelper in installation
media. The tool should run on any engineering client. There are two different exe
files: CompFileHelper20.exe and CompFileHelper45.exe. The
CompFileHelper20.exe requires .NET Framework 2.0 and is targeting SV5.0 SP2
up to all variants of SV5.1 provided that the appropriate .Net framework is installed
on the PC. The CompFileHelper45.exe requires .NET Framework 4.5 and is
targeting SV6.0 and future versions. The exe file are dependent on some help Dlls
according to Figure 172.

(%) COMHelper.dll

5 CompFileHelperd5.exe

% Interop. AcAIPAccessLib.dll
(%] Interop. COMHelperLib.dll

Figure 172. DLLs for CompilerOutputFileHelper

The Compiler Output File Helper tool extracts compiler output files from an 800xA
Aspect Server and stores the files in a folder on a disc. All files belonging to a

3BSE035980-600 A 403

Compiler Output File Helper Section 5 Maintenance and Trouble-Shooting

control builder project, or all files belonging to one or many controllers of a control
builder project, can be extracted in one single operation.
Extract Compiler Output Files for Project

1. Select the System and Control Builder Project from the drop down boxes as
shown in the Figure 173.

Exdract | Restore | Log

Extract Files
e Contraollers
U
nfyCController
Project: | MyFP4PAProj -

<Insert Text to add Comment to Log:

Error Messages

Figure 173. Extract Tab of the Compiler Output File Helper

2. The controllers of the selected project are shown in a list box. One or many

controllers can be selected in the list box. An edit box provides the possibility
to add text to the log file.

404 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Compiler Output File Helper

3. Click the Extract Files and a file browser dialog appears as in Figure 174.

e

Browse For Folder — -

> 3. 5bBdddeb25f201f21899eae
» |, ABB Industrial IT Data

> Admin

> 1 CompilerQutputHelper
, Configs

> . Data

> Download

>0 MAINT

a0 MSOCarhe

o) (o

Figure 174. File Browser Dialog

4. Select a CompilerOutputHelper folder and click the OK. The tool extracts all
compiler output files belonging to the selected controllers and the applications
associated with the controllers. The tool creates a new sub directory each time
the Extract files is activated.

Restore Files using Compiler Output Helper

1. In the Restore tab click Browse to open the file browser dialog as shown in
Figure 174.

2. Select an earlier created folder from the file browser. Information about path,
computer name, project and date are shown as in the Figure 175. In addition, a

3BSE035980-600 A 405

Compiler Output File Helper Section 5 Maintenance and Trouble-Shooting

list box with controllers is displayed. One or many controllers can be selected
in the list box. An edit box provides the possibility to add text to the log file.

|E;.:[|ad| Restore |Log |

Restore Files
Cortctn
oft
Path: C:\NCompilerOutput Helper\CompilerOutput_ My forCCo

Files from: SE-L-7001927

Project: MyFP4PAPrj

Date: 1241672013 4:.05 PM

<Insert Text to add Comment to Log:

Ermor Messages

Figure 175. Restore Tab of the Compiler Output File Helper

406 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Compiler Output File Helper

3. Click Restore Files and a Confirm action dialog as in Figure 176 is shown.
Click Ok in the confirmation dialog in order to restore the files.

Confirm action

Do you really want to restore/replace files for the selected controllers?
Please make sure that you have read and understood the user manual before

proceeding with this action!

Figure 176. Confirm action dialog

3BSE035980-600 A 407

Compiler Output File Helper Section 5 Maintenance and Trouble-Shooting

Log Tab in the Compiler Output File Helper

This Log tab displays the current log as in the Figure 177. The SessionLog.txt file is
also available in the CompilerOutput folder.

—
800xA Compiler Cutput File Helpe

Extract | Restore | Log

“WCompilerCutput MyFP4PAProj 2013-12-17 10.48.04%\app3.cdo

I 2013-12-17 10_.48_04_.75%% File extracted to: C:ohCompilerCutputHelper
WCompilerCutput MyFP4PAProj 2013-12-17 10.48.04\app3.cdoXml

I 2013-12-17 10.48_04_81% File extracted to: C:ohCompilerCutputHelper
WCompilerCutput MyFP4PAProj 2013-12-17 10.48._04\app3.rrs

I 2013-12-17 10.48_04_837 File extracted to: C:ohCompilerCutputHelper
WCompilerfutput MyFP4PAProj 2013-12-17 10.48 . 04\app3.rrsXml

I 2013-12-17 10.48_04_853 File extracted to: C:ohCompilerCutputHelper
WCompilerCutput MyFP4PAProj 2013-12-17 10.48.04\app3.xml

I 2013-12-17 10.48_04_874 File extracted to: C:ohCompilerCutputHelper
WCompilerCutput MyFP4PAProj 2013-12-17 10.48.04\app3.crs

I 2013-12-17 10.48_04_8%& File extracted to: C:ohCompilerCutputHelper
WCompilerfutput MyFP4PAProj 2013-12-17 10.48._04\app3.crv

I 2013-12-17 10.48_.04_.914 File extracted to: C:ohvCompilerCutputHelper
WCompilerQutput MyFP4PAProj 2013-12-17 10 48 04\app3.ii

I 2013-12-17 10.48_08.02¢ All expected files were extracted.

Ermor Messages

Figure 177. Log Tab of the Compiler Output File Helper

408 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Migration

Migration

Within the same system version, it is possible to migrate a project from 800xA to a
Compact Control Builder project as well as to migrate a project from a Compact
Control Builder to a project in 800xA.

Only complete projects can be migrated. It is possible to migrate smaller objects,
such as single libraries, applications, controllers or types, by packaging them
within small or empty projects.

Migration from 800xA to Compact Control Builder

When migrating a project from 800xA to Compact Control Builder there are some
things to consider:

It is not possible to migrate projects containing High Integrity controllers or
controllers containing a PM865 CPU.

It is not allowed to migrate a project containing more than one version of a
user-defined library. However, it is possible to migrate projects containing
several versions of standard libraries.

Projects containing controllers with undefined hardware units cannot be
migrated. The migration will be aborted and the user has to define all undefined
hardware units before a migration can be done.

A project containing hardware that is not supported in Compact Control
Builder, for example CI860, will be migrated. When the migrated project is
opened in Compact Control Builder error messages are displayed and all
hardware types of not supported hardware units will be displayed as undefined
hardware units in Compact Control Builder.

3BSE035980-600 A

409

Migration from 800xA to Compact Control Builder Section 5 Maintenance and Trouble-Shooting

=-ff Contrallers
=-f Contraller_1 (172.16.84.124)
-- Connected Applications
-- Connected Libraries
=] Hardware AC G00M

E_i, 0 PrM3&4 | TPE30]
: 1554 undefined

hardware units

1
. - Undefined
3 Undefined
i S Access Variables

Figure 178. Undefined hardware units in Project Explorer.

* Online files, such as Cold Retain files and Difference Report files, are not
migrated.

To migrate a project in 800xA to Compact Control Builder, open the project to be
migrated in Control Builder Professional and select:
Tools>Maintenance>Compact CB>Save in Compact CB Format.

Browse For Folder E|E|

Export Project b Faolder:

CVABB Industrial IT DatalEngineer IT DatalCaontr, . \Projects

[= % Local Disk (C:) -~
[T 400H
[C5) 800xA_online helpWin2000Format_local
= [C5) ABB Industrial IT Data
|5 Contral IT Data
= IC5) Engineer IT Data
= [Contral Builder M Professional
|5 HWwLibraries
I5) LagFiles
[l i cjects
|5 Reports
|51 ReportTemplates w
< >

l IMake New Folder l I oK l [Cancel]

Figure 179. Save in Compact CB Format dialog

410

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Migration from Compact Control Builder to 800xA

A dialog to select where to save the project is opened. The migrated project will be
placed in the selected folder, together with all applications and controllers within the
project. All user-defined libraries (both POU and hardware) will also be placed in
this folder.

ﬂ To make the OPC server work properly, it is recommended to place the folder
with the migrated project in the configured project folder of Compact Control
Builder, before the migrated project is opened.

Migration from Compact Control Builder to 800xA

When migrating a project from Compact Control Builder to 800xA there are some
things to consider:

* Before migrating, make sure that all used libraries in the project are available.
Move/copy the complete installed project structure, including the Libraries
folder, to the location where you want to do the migration from.

= [2) Compact Contral Builder AC S00M
IZ) LogFiles
B0
I Libraries
IZ) Plant
| Reports
|2 ReportTemplates

Figure 180. Project structure with “Libraries” and the “Plant” project.
* Itis only possible to migrate a project once.

* Itis not possible to use the migration to overwrite anything that already exists
in 800xA.

* Projects containing controllers with undefined hardware units cannot be
migrated. The migration will be aborted and the user has to define all undefined
hardware units before a migration can be done again.

* A user-defined library is opened from Compact Control Builder format and
written to 800xA, if it does not exist in 800xA. If a user-defined library exists
in 800xA it is always read from 800xA, no matter what state it has.

3BSE035980-600 A 411

Migration from Compact Control Builder to 800xA Section 5 Maintenance and Trouble-Shooting

* The migration is aborted, if the project to be migrated has a library that
contains different types and it has same name as a library that already exists in
800xA. The library has to be renamed before it can be migrated again.

* If astandard library is missing in 800xA, the migration is stopped. The missing
library has to be installed in 800xA before a complete migration can be done.

To migrate a Compact Controller project to 800xA, start Control Builder
Professional and select:
Tools>Maintenance>Compact CB>Open from Compact CB Format.

Open from Compact CB Format

Lok, in: |_} Projects vl) ? % [T~

) [)Doc_proj_SOrelease
| g?) Test

My Recent
Documents

€

Desktop
My Documents
58
ty Computer

h‘;‘] File name: || w | I Open l

.-j .
My Metwark | Files of type: |F'roiect Files [*.pri) v| [Cancel]

Go to folder

|F'r0iect Files - |

Figure 181. Open from Compact CB Format dialog.
A dialog to select the project (*.prj) to be migrated is displayed.

If more than one system and/or more than one environment are available, a dialog
where to select destination system and destination environment is displayed, after
the Open from Compact CB Format dialog.

412 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Import and Export

Import and Export

Introduction

The import and export function is used for selective backup of entities such as
projects, applications, libraries, etc. or for moving solutions between systems.

For backup of a complete system, use the Backup/Restore function. The
Backup/Restore function is described in Backup and Restore on page 401.

Any entity of your automation solution can be exported for import at a later stage.
The export is stored as an afw file.

Exporting an entity can be done either with or without dependencies. If
dependencies is included, the export file will be consistent and include everything
needed to be able to import it at a later stage.

Exporting an entity can be done with or without children. For normal maintenance,
the selection with children shall always be used.

Import and Export Alternatives on page 416 shows how to export and import entities
and the differences between exporting with or without dependencies/children.

ﬂ See also Applying Cold Retain Values when Importing Applications on page
417.

Export a Library

The user defined permissions that are used to configure property permissions are
@ not included when exporting the entities (project, application, library etc.) with or

without dependencies.

The user defined permissions have to be manually exported separately by the

user.

This option lets you backup/export a single library. When you are done, an afw file
is created. This file can be used to import the library into other systems.

For information on how to change the development state of a library, see Library
@ Management on page 135.

3BSE035980-600 A 413

Export a Library

®

Section 5 Maintenance and Trouble-Shooting

When importing a library that already is present in the system, types that are not
existing in the afw file will be removed automatically. Use the Show Differences
alternative on the Import/Export menu to find these types, then delete them
manually.

If a library is already present and its status is Closed or Released, it cannot be
imported.

Make sure you are in the Library Structure:

1. Inthe Library Structure, select the library version (for example MyDevLib 1.0-
0). The aspect pane opens.

2. Select the Library Version Definition aspect and click the General tab. The
aspect preview pane opens.
Qo gl + | MyDevlib 1.0-0:Library Version Defir ﬁ & -

General]History] Aspects] Dependencies] Library Usage] Consistency]

Library Version

Mame: | MyDevLib verson: | 1= . [o= -] o=

State: Released

Cwner

Company:

Department:

Developer:

Skat
ae Mumber of types: 0
" Open Mumber of objects: 4
o Max depth: 1
+ Released

Export Library... | Mew Version, .. |

Figure 182. The Library Version Definition aspect preview pane, with the State
selected as ‘Released’.

3. Click Export Library. The Export Library dialog opens.

4. Name the library file (it is advisable to use the library name, for example
MyDevLib) and click Save. Plant Explorer saves an afw library file.

Plant Explorer will display the text Library export succeeded under the Library
Archive button, when done. The library will be saved as an afw file (in this
example MyDevLib.afw)

v

414 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Export an Application/Controller

Export an Application/Controller

You can also Backup/Export an application or a controller. Drag the
application/controller object and drop it onto the Import/Export window, then select
whether to export with dependencies and/or children.

Import an Application/Controller

Rollback Application/Controller Version

To rollback to an application/controller backup, import the backup
MyApplication/MyController.afw file.

Re-import of Project

ﬂ The Applications/Controllers that are added in the project after exporting the
project, are not deleted if the exported project is imported again. If required, they
can be deleted manually.

For more information on how to use the Import/Export Tool, see the System S800xA
Tools (2PAA101888*) manual.

3BSE035980-600 A 415

Import and Export Alternatives

Section 5 Maintenance and Trouble-Shooting

Import and Export Alternatives

To reach an expected result when exporting/importing, the following table can be

used as a guide.

Table 29. Export settings

Object Export Settings |Result (afw file) Notes for Import

Project Including Entire Project including Answer “No” to import the
dependencies applications, controllers and | Control Network object.
and children. user-defined libraries.

Project No dependencies, | Entire Project including All libraries used in the
including children. | applications and controllers. | project must exist in the

system when importing

Application No dependencies, | Entire Application without Connected libraries must
including children. | connected libraries. exist in the system when

importing.

Application Including Entire Application, Project Choose to not import the
dependencies object plus all user-defined Project object and Control
and children. libraries inserted in the Network object.

project.

Controller No dependencies, | Entire Controller (without Connected libraries and

including children. | connected libraries) plus applications must exist in the
connected application system when importing.
objects (only the positions of
the applications, not the
entire application entities).

Controller Including Entire Controller, all Choose if you want to import
dependencies connected applications, the |the Project, connected
and children. Project object, and all user- | applications and libraries.

defined libraries inserted in
the project.

Library version |Including Entire Library plus all user-
dependencies defined libraries, connected
and children. to the library.

416

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Applying Cold Retain Values when Importing

Table 29. Export settings (Continued)

Object Export Settings |Result (afw file) Notes for Import

Library version | Nodependencies, | Entire Library without Connected libraries must
including children. | connected libraries. exist in the system when

importing.

Library version |Export Library Entire Library without Connected libraries must
button in Library | connected libraries. exist in the system when
Version Definition importing.
aspect.

Control Module | Nodependencies, | Only the type. If the type has any formal

Type / Function |including children instances, the formal

Block Type / instances types must exist in

Diagram Type the system when importing.

Control Module |Including Entire application or library

Type / Function | dependencies where the type is placed,

Block Type / and children. including the application or

Diagram Type libraries dependencies.

By default, the VMT application under a High Integrity controller is not included
ﬂ in the export, when the High Integrity controller is exported. If this controller

(from the Production system) is to be re-imported, the VMT Application must be

manually included in the export.

It is recommended to always include all the applications that are connected to the

controller while exporting.

Entities in other structures (for example, the Functional Structure) are not

ﬂ included in the export even if it is done including dependencies. AC 800M
entities existing in Functional Structure (for example) must then be exported
separately.

Applying Cold Retain Values when Importing Applications

When importing an application the cold retain files are imported to the system only
if the application does not exist in the system or if the application exists but no
download has been made (no cold retain values exist in the system).

3BSE035980-600 A 417

About Library Import/Export Section 5 Maintenance and Trouble-Shooting

This applies when importing to a non version handled system (i.e. a system not
having Configure-Deploy Support enabled) or when importing to the production
environment of a version handled system.

The cold retain values are never imported when importing an application to the
engineering environment of a version handled system. It is possible to force an
import of the cold retain values to the system (except to engineering environment).
To do that the cold retain files (.crs and .crv files) associated with the application
should be removed using the FSD Tool. When no changes (apart from saving new
cold retain values) have been made in the application since when the export was
done a dummy change of the application in the system is necessary in addition to
removing the associated files.

About Library Import/Export

Library management is described in Library Management on page 135. However,
there are some things that are worth emphasizing from a maintenance perspective:

* When importing and exporting libraries, it is of importance which version of a
library that is used. If a library is imported that depends on another version than
the one already in the system, one of two things will happen:

— If the library was exported with all libraries it depends on, then you will
simply get two versions of the same library in your system.

— If the library was exported without dependencies, there will be an error
and your imported library will not work.

» Ifalibrary is exported without having reached the development state Released,
there is a risk that there might be two libraries with different content, but with
the same version number. If the “wrong” library is imported, then serious
problems might arise.

If you need more information about libraries and library maintenance, refer to
@ System 800xA Control AC 800M Binary and Analog Handling (3BSE035981%).

418 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Detailed Difference Report During Import

Detailed Difference Report During Import
The detailed difference report shows data differences from the aspects.

A number of aspect types support detailed difference report, enabling the
comparison of data differences during import.

The aspect types that are supported include Control Module Type, Function Block
Type, Diagram Type, Single Control Module, Data Type, Application, Program,
Diagram, Project, Controller, Library, Hardware library, Hardware Type, Hardware
unit, Task, Access variables, and Project constants.

For more details about Detailed Difference Report refer to System S800xA
Maintenance (3BSE046784*) manual.

Start Values Analyser

The StartValuesAnalyser collects the runtime values and prints the path, init value,
communicated value, quality, and type for all cold retain and retain

variables /parameters of a Control Builder application running in the controller(s).
The Start Values Analyzer is also able to compare runtime values from different
occasions and to print out the differences. If a tunable variable/parameter is
configured as retain, instead of cold retain, then the tuned value will be lost after a
firmware upgrade of a controller. The Start Values Analyzer is able to propose a list
of cold retain candidates. This function is available for version 6.0 and forward.

The Start Values Analyser tool can be opened from Engineering &
Development\Control Builder M\Tools\StartValuesAnalyzer in installation media.
There are two different exe files: StartValueAnalyzer20.exe and
StartValueAnalyzer45.exe. The StartValueAnalyzer20.exe requires .NET
Framework 2.0 and is targeting SV5.0 SP1 up to all variants of version 5.1 provided
that the appropriate .Net framework is installed on the PC. The
StartValueAnalyzer45.exe requires .NET Framework 4.5 and is targeting version 6.0
and future versions. The tool makes use of an AC 800M OPC Server. So it is
appropriate to run the Start Values Analyzer executable on a PC with an OPC
Server.

3BSE035980-600 A 419

Start Values Analyser

Section 5 Maintenance and Trouble-Shooting

Data Collection from Controllers

r
(-l Start Values Analyzer - -

e | B S

Collect Values From Controller(s]J Settings Compare

’V| Select Application(s) |I

Figure 183. Select Application(s)

Click Collect Values From Controller(s) and select Select Application(s). Then
the Select Application(s) dialog opens as in the Figure 184.

(-l Select Application(s)

- ———

Figure 184. Select Application(s) Dialog

T A
ool | & OPC Server for ACB00M » Files +
Organize « MNew folder
=l Recent # MName ‘
I) Appl.cdoXml
=l Libraries
j - 7] app2.cdoXml
= Docun
I . | app3.cdoXml
@' Music

The tool automatically browses to the default files folder of the OPC Server. The
application compiler output files needed by the OPC Server are present in this
folder. It will then analyze the selected cdoXml file and the corresponding rrsXml
file of each selected application. These files contain information about all POUs,
variables, parameters, cold retain properties, initial values and so on, for the current
version of an application. It connects to the OPC Server and communicates the
runtime values of the cold retain and retain variables/parameters and prints out the
path, initial value, communicated runtime value, quality and types the
variables/parameters to files.

420

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Start Values Analyser

The tool creates a new directory each time the Select Application(s) dialog is
executed.

| StartValuesData_2013-11-0515.52.24.681 11/5/2013 3:52 PM
| StartValuesData_2013-11-0515.52.45.714 11/5/2013 3:52 PM

Figure 185. StartValuesData Folder

For each selected application the respective output files are created as in the
Figure 186.

|| ApplCRCandidates. bt
|| ApplCRValues. bt

|| ApplDiffCRValues bt
|| ApplDiffRValues. bt
|| ApplRValues.txt

Figure 186. StartValues Output Files
* The CRValues file contains all cold retain variables/parameters of the
application.

* The DiffCRValues file contains the cold retain variables/parameters where the
initial value and the communicated value are different.

* The RValues file contains all retain variables/parameters of the application.

» The DiffRValues file contains the retain variables/parameters where the initial
value and the communicated value are different.

* The CRCandidates file contains the retain variables/parameters where the
initial value and the communicated value are different and variables/parameters
are not written by 1131 code.

The content of a value file can be displayed in Microsoft Excel by opening the file
with the Text Import Wizard. Select the InitalValue and CommValue columns and

3BSE035980-600 A 421

Controller Configuration Section 5 Maintenance and Trouble-Shooting

set the data format to text as shown in Figure 187.

Text Import Wizard - Step 3 of 3 (2 [l

This screen lets you select each column and set the Data Format.

Column data format

_) General
‘General' converts numeric values to numbers, date values to dates, and all

remaining values to text.

Jose: o [3]

_) Do not import column (skip)

Data preview

zeper=l

F=th

Ppplications.Appl_ SM1 MyCmDl _myParl

Ppplications.Appl_ SM1 MyCmDl _myParZ

Ppplications.Appl.SM1 MyCmDl mySPar NonInt [

Ppplications.Appl_ SM1 MyCmDl _mySPar_ RInt
4 1

Figure 187. Text Import Wizard

Controller Configuration

Controller configuration includes the configuration or the controller Error Handler.
The Error Handler is used to configure controller behavior on system errors. The
following functions are provided by the Error Handler:

* General interface to report errors from all different parts of the system.
* Report mechanism to the operator for all types of errors and warnings.
* Handles system actions to, for example, stop the controller.

The majority of the reported errors can only be triggered internally by the system,
and are not easily repeatable by the end-user. The Error Handler is not intended to
be used for system diagnostics.

The Error Handler has no knowledge about redundancy, but redundancy may
maintain the function of the system. If redundancy maintains the system function,

422

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Controller Configuration

the reported error gets auto-acknowledged and for example, System Alarm Output
gets in-activated.

ﬂ The Severity in the Controller Settings editor is only applicable to the severity of
the call to Error Handler, and should not be mixed up with the Severity of the
System Alarm. See General status bit ErrorsAndWarnings on page 560.

Error Handler settings are made for each controller, in the Controller Settings
dialog. There are certain settings that cannot be changed (they are dimmed in the
dialog). You can add additional actions, but you cannot change the original settings.

The system engineer performing the configuration must be aware of the impact of
the enabling Error Handler actions. For example:

* Controller Shutdown action decreases the controller availability. Controller
Shutdown sets the PM in empty controller mode and erases the application
programs.

* Log action increases the amount of print-outs in the controller log, which
possibly makes it difficult to find important and relevant information.

* Event action increases the amount of events in the operators Event List, which
possibly makes it difficult to sort out relevant information and events may even
be overwritten.

AC 800M High Integrity (HI) controllers have a number of settings that are not
present in a non-HI controller, see Controller Settings in High Integrity
Controllers on page 427.

Error Handler settings are slightly different for High Integrity and non-High
Integrity controllers:

* Controller Settings in Non-High Integrity Controllers on page 424 describes
how to configure the Error Handler in a non-High Integrity controller.

* Controller Settings in High Integrity Controllers on page 427 describes Error
Handler settings that are specific to a High Integrity controller.

ﬂ Errors can be reported from the code using the ErrorHandler function block type
or the ErrorHandlerM control module type. Using these types, errors identified by
the code can be handled in the same way as other errors. For more information on

how to configure the ErrorHandler(M) types, see corresponding online help.

3BSE035980-600 A 423

Controller Settings in Non-High Integrity Controllers Section 5 Maintenance and Trouble-Shooting

The ErrorHandler(M) types should be used with care, since they can be used to
@ reset the controller.

Controller Settings in Non-High Integrity Controllers

Figure 188 shows the Controller Settings dialog for a non-High Integrity AC 800M
controller. It is displayed by right-clicking the controller in Project Explorer and
selecting Properties > Controller Settings.

-4! Controller Settings ll

r~Load Balancing

V¥ Enable overload compensation

r~Fatal Overrun

Reaction: Il‘-lothing j
Limit: I 10 jl Interval cyde(s)
~Online Upgrade

Handover limit: I 3000 ms

r~Error Reaction

System Diagnostics |Execuh'on I 1jo I

Actions Log Event Controller
Severity Shutdown
1-Low - - o
2-Medium [- o
3 -High T i r
4-criical [i I~
5 - Fatal v v I

OK I Apply | Cancel | Help |
Figure 188. Controller Settings dialog for an AC 800M controller (non-HI).

If load balancing is enabled, overrun and latency supervision is automatically
disabled, see Overrun and Latency on page 178.

The default setting for a non-High Integrity controller is that load balancing is
enabled and overrun and latency supervision disabled. If you disable load balancing
overrun and latency supervision is automatically enabled.

424 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Controller Settings in Non-High Integrity Controllers

Fatal overrun settings are used only if overrun and latency supervision is enabled
(this part will be dimmed if load balancing is enabled, see Figure 188).

The Fatal Overrun part of the dialog lets you set how many overruns (missed scans)
that are allowed before a fatal error is considered to have occurred. The Reaction
setting is used to select which action the controller should take when a fatal overrun
error occurs. The options are Nothing, Stop Application, and Reset Controller (The
default option is Nothing). The default setting for the Limit is 10 interval cycles.

It is important to avoid configuring the error handler in such a way that a fatal
overrun error has two corresponding reactions, one that is set in the Fatal Overrun
part of the dialog (for example, Stop Application) and one that is set in the Error
Reaction dialog (for example, Controller Shutdown for the corresponding
severity). Note that severity Fatal and Critical always lead to a controller
shutdown.

If settings are inconsistent, you will receive a warning when trying to save the
new settings.

For a non-High Integrity controller, the Error Reaction part lets the user set the
following, see Table 30.

Table 30. Error Reaction — non-High Integrity controller. This part of the dialog is used to set

controller actions at system errors of different severity.

Severity Log Event Controller Shutdown
1 Low Configurable for all Configurable for all Configurable for all
2 Medium Always for system Configurable for all Configurable for all
diagnostics and
execution
Configurable for I/0
3 High Always for system Always for system Configurable for all
diagnostics and diagnostics and
execution execution
Configurable for I/O Configurable for I/O
4 Critical Always Always Always
5 Fatal Always Always Always

3BSE035980-600 A

425

Controller Settings in Non-High Integrity Controllers Section 5 Maintenance and Trouble-Shooting

The above table shows controller reactions (fixed and configurable) when errors of
different severities are received by the Error Handler in a non-High Integrity
controller.

There are three different Error Types defined, and each Error Type may be
configured with different actions for different Severities:

* System Diagnostics: General system errors for example, corrupt memory, full
queues, lost communication reported by for example the logic solver or CEX
module.

* Execution: Errors regarding IEC 61131-3 application execution, example
latency, overrun, sequence verification, CRC (memory corruption), and so on.
Execution Errors can also be activated from user defined diagnostics by using
Function Block ErrorHandler or Control Module ErrorHandlerM.

* I/O: Errors from any Hardware Units or Modulebus scanner, for example
channel error or faulty module.

Definition of Error Handler Severities:

* 1Low

Does not affect the system safety or the functionality of the reporting module.
* 2 Medium

Does not affect the system safety but the functionality in the reporting module.
* 3 High

May affect the system safety. The functionality in the reporting module is
affected. Redundancy may maintain the function of the system.

* 4 Critical
Affects the system safety; the whole reporting "subsystem" has failed.
Redundancy may maintain the function of the system.

* SFatal
Unrecoverable software errors. The whole reporting subsystem has failed.
Redundancy will not maintain the function of the system. This severity is only
used when there is no possibility to safely continue using a back-up module.

426 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

Controller Settings in High Integrity Controllers

Controller Settings in High Integrity Controllers

The Controller Settings dialog is different for an AC 800M High Integrity (HI)
controller. It is displayed by right-clicking the (HI) controller in Project Explorer
and selecting Properties > Controller Settings. There are also differences
regarding what can be configured for the Error Handler, see Figure 189.

¥& Controller Settings

Fatal Crverrun

Lirnit: 10 ﬂ Inkerval cycles)

Diagnostic Configuration

Application Type:

Mormally Energized)Shutdown

FORT {Diag.Cycle,): | 3000 ms

SIL3 Application Start Values

Update interval: 24 h
Online Upgrade
Handover limit: 3000 s

Errar Reaction

Syskem Diagnostics]Execution] jfis]]

Reaction: | J

Actions Log Event Controller System Alarm
Severity Shutdown Output
1-Low r r r r

2 - Medium [r r r

3 - High 3 3 3 v

4 - Critical ¥ 3 3 v

5 - Fatal 3 3 3 v

Ok | | Cancel | Help |

Figure 189. Controller Settings dialog for an AC 800M High Integrity controller.

Fatal Overrun settings are used to set how many overruns (missed scans) that are
allowed before a fatal error is considered to have occurred. The Reaction setting is
used to select which action the controller should take when a fatal overrun error
occurs. The options are Nothing, Stop Application, and Reset Controller (The
default option is Nothing). The default setting for the Limit is 10 interval cycles.

3BSE035980-600 A

427

Controller Settings in High Integrity Controllers Section 5 Maintenance and Trouble-Shooting

overrun error has two corresponding reactions, one that is set in the Fatal Overrun
part of the dialog (for example, Stop Application) and one that is set in the Error
Reaction dialog (for example, Controller Shutdown for the corresponding
severity). Note that severity Fatal, Critical and High always lead to a controller
shutdown.

@ It is important to avoid configuring the error handler in such a way that a fatal

If settings are inconsistent, you will receive a warning.

The Diagnostic Configuration part of the dialog is only there if your controller is an
AC 800M High Integrity controller. The Application Type setting affects the Error
Handler Configuration options.

There are two possible values for Application Type:
* Normally Energized/Shutdown (default setting).

* Normally De-energized/Supervision which lets the user configure controller
reset for system diagnostics and execution errors with severity High. Otherwise
the settings are the same as for Low demand/Shutdown.

FDRT (Diagnostic Cycle Time) must contain a value that is 1000 or higher. The
default value is 3000. Any value lower than 1000 is ignored. FDRT is the maximum
elapsed time from the moment an error occurs, until action is taken. If FDRT is
reached without any action being taken, an error with the severity Critical will be
generated.

After a power fail the SIL3 applications are restarted using cold retain marked
values which are periodically saved in the controller with a cycle time set by the
user. The update interval can be set to a value between 1 hour and 24 hours to
configure how often the values should be saved in the controller. Default value is 24
hours. See Table 7.

For a High Integrity controller, the Error Reaction part lets the user set the
following, see Table 31.

428 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Controller Settings in High Integrity Controllers

Table 31. Error Reaction — High Integrity controller. This part of the dialog is used to set controller
actions at system errors of different severity .

. Controller System Alarm
Severity |Log Event Shutdown Output
1 Low Configurable for all | Configurable for all | Configurable for all | Configurable for all

2 Medium | Always for system | Configurable for all | Configurable for all | Configurable for all
diagnostics and
execution
Configurable for I/O

3 High Always Always Always(") Configurable for all
4 Critical Always Always Always Configurable for all
5 Fatal Always Always Always Configurable for all

(1) If Application Type is set to Normally Energized/Shutdown, it is possible to configure controller shutdown for
system diagnostics and execution errors with severity High.

The severities (left column in the table) and error types are the same as for non-High
Integrity controllers, see page 426.

The System Alarm column in Table 31, is only there for High Integrity controllers.
If System Alarm is checked for a certain severity, a system alarm will be generated
each time an error of the corresponding severity occurs.

3BSE035980-600 A 429

Error Handler Log Entries

Section 5 Maintenance and Trouble-Shooting

Error Handler Log Entries

If an error of a certain severity is configured to be logged, it will generate a
Controller System log (see Controller System Log on page 458) entry with the
following general structure.

E yyyy-mm-dd hh:mm:ss:ms ErrorHandler PM: Error descr. (xX,vy,R)

* Such an entry should be read according to the Table 32 table.

Table 32. How to read a log entry generated by the Error Handler.

Part Description Allowed Value(s)
E Error
yyyy-mm-dd Date

hh:mm:ss:ms

Time when error was time
stamped

ErrorHandler PM/SM:

Error detected by

ErrorHandler PM:
=Processor Module
ErrorHandler SM:
Safety Module (HI
controller only)

Error descr.

A text describing the error

(x,y,ERS)

x=error type

[

(System Diagnostics)
(Execution),
(1/0)

w N

y=severity

(Low)
(Medium)
High)
Critical)
Fatal)

U W N

ERS=action type

Event)
Reset)
System Alarm)

—_ e~ o~ |~~~

430

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Online Upgrade

Online Upgrade

Redundant AC 800M controllers can be upgraded with new firmware versions
online. Online upgrade is initiated from Control Builder by a nine-step Wizard.
Refer to 800xA Online upgrade and Co-existence, versions compatibility
(3BSE080447) in the ABB SolutionsBank for the supported upgrade paths.

Plan for Online Upgrade already at Project Design Phase

The key for success is to plan for online upgradeability already when making the
initial installation. Certain design criterias exist and some consequences must be
considered. It is recommended to document these for the future, so that the persons
later on making an Online upgrade easily can analyze the process impact.

One should, if possible, also perform an Online upgrade during Factory or Site
acceptance tests, and document the result.

The following design criterias exists, and should be considered during design phase.
* The controller must be redundant, that is, two PM8xx forming a redundant pair.

* Define what Communication Interfaces that should be made redundant.
Redundant CI units are not necessary; you can have a non-redundant CI unit in
a redundant controller, but then the communication will be disturbed, and this
will cause interrupted communication and may lead de-energized outputs.
CI854 should, for example, be made redundant for this reason.

ﬂ For more information about each CI unit’s ability to support Online upgrade,
refer to the System 800xA System Guide Technical Data and Configuration
(3BSE041434%).

* The process demands additionally 2 MB of free memory in the controller.

* Online upgrade cannot be performed for controllers with distributed
applications.

* Use of the PPP protocol will prevent an Online upgrade.

e The Modulebus timeout on AI880, DI880 and DO880 must be set to at least
four times the Modulebus Scan Cycle Time.

* SIL3 tasks may not use the option Always Update Output Signal First in Next
Execution.

3BSE035980-600 A 431

Plan for Online Upgrade already at Project Design Phase Section 5 Maintenance and Trouble-

* They may be no unused tasks in the controller.
* The total controller load may not exceed 95 %.

* SMBS8I11 and SM812 for SIL3 application has a dedicated synchronization link
to synchronize Active and redundant SM for hot-insert and Online upgrade.
The synchronization link must be present during hot-insert and Online upgrade
situations to copy data between two SM811s or two SM812s in a redundant
setup.

* During the switchover of plant control, communication is interrupted for a
short while. Communication blocks (example MMSConnect and SBConnect)
may during this time indicate communication loss. Valid signals may drop for a
few seconds. The application code must take this into account.

ﬂ IAC (using communication variables) is not affected; its timeout during Online
upgrade is automatically extended to 30000 ms or to the configured timeout value
if that is longer, and this avoids any interruption in connection during the process.

* For Online upgrade when using Safe MMS communication, ensure that the
OLUTimeOut parameter is set to 30000 ms and that the UseOLUTimeOut
parameter is set to true in the MMSRead control modules. This avoids any
interruption in connection during the whole Online upgrade process.

* The execution of tasks is halted for a couple of seconds during one of the
upgrade steps. Define for how long the process can tolerate the controller to be
frozen. Enter this value as the Handover Limit in the Controller Settings dialog.
It is always advisable to choose the hand over time limit with a margin.

For High Integrity controllers, the Handover Limit time should not be set longer
than the FDRT(Diag.Cycle.) setting.

The formula for calculating the actual time can be found in
System 800xA System Guide Technical Data and Configuration (3BSE041434%).

432 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Why You Need to Read this First

Why You Need to Read this First

Online upgrade is initiated from Control Builder by a 9-step Wizard that will guide
you through the complete upgrading process. At a certain point during this process
some actions will occur in the control system. The Wizard will for example
temporarily stop the application, temporarily disconnect the redundancy and freeze
the I/O update. Single CI units will be stopped during firmware download. All of
these actions are harmless to your process — provided that you have prepared your
Online upgrade in a correct manner!

In order to perform an Online upgrade successfully, you are strongly advised to start
by acknowledging the preparations, requirements and prerequisites given in the sub-
sections Plan for Online Upgrade already at Project Design Phase on page 431,
Restrictions for Online Upgrade on page 434 and Preliminary Actions for Online
Upgrade on page 435.

After that, proceed with the description in sub-section Online Upgrade Process on
page 439, to fully comprehend the concept behind an Online upgrade process.

The last sub-section Running Online Upgrade on page 444, will help you to start the
Wizard and begin an Online upgrade. You will be guided by a 9-step Wizard. And
although these steps require a simple Next button click to proceed, some steps will
contain additional buttons, which demands your special attention. For that reason,
the Wizard has also been equipped with context sensitive Help buttons that will lead
you directly to a descriptive topic page in Online help.

For example, the Wizard will sometimes during the process prompt you for different
sub-actions inside a step which mean clicking buttons in a certain order of priority.

When you enter a Wizard-step that contains multiple choices; click Help and follow
the short suggestions for correct operations within that step.

3BSE035980-600 A 433

Restrictions for Online Upgrade

Section 5 Maintenance and Trouble-Shooting

Restrictions for Online Upgrade

®

®
®

Even though the Wizard will check the selected hardware configuration and analyze
the applications status in the Project Explorer, you should confirm that your
configuration is not affected by the following restrictions.

It is not allowed to make changes in the applications, or change any settings for
controller or tasks before start of an Online upgrade session, except for changes
caused by new library versions. No application is allowed to be added or deleted.
If such changes have been made, a download is needed before start of the Online
upgrade.

The Online upgrade is not allowed when the changes are downloaded from
another engineering station.

Backup Media cards, that contain an application image or firmware files or have
earlier contained firmware files and are not properly reformatted, will interfere
with the Online upgrade process and must be removed from both the primary and
backup PMs.

Technical Data and Performance

During the switchover of plant control, communication is interrupted for a while.
Measurements have been done to exhibit the impact.

All the values listed below are typical values and they might vary from system to
system:

* The trend values in Process Portal are interrupted for approximately 20
seconds.

e The alarms are delayed in the range of 20-30 seconds during switch of primary
PM8xx.

Firmware Compatibility

The new versions of the firmware come from the new versions of the connected
hardware libraries. The protocol handler in Control Builder analyzes the new
firmware versions for compatibility.

434

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Preliminary Actions for Online Upgrade

Based on the compatibility check, the following settings are displayed during the
upgrade process of the firmware in the hardware unit:

Mandatory-This means that the unit must be upgraded with the new firmware
due to compatibility reasons. It is not possible to deselect this option.

Recommended—This means that it is possible to choose whether to upgrade or
not by checking/unchecking the item. This item is checked, by default. If it is
decided not to upgrade the item, the latest corrections made to the firmware
will not be available, even though the firmware is compatible.

Not Available-This appears when no valid upgrade is possible as no new
firmware version is available.

Uncertain—This appears when the old firmware versions in the primary unit
and the backup unit are different. The protocol handler is unable to determine
which firmware version is to be upgraded.

CI853 will always show up as changed/recommended, even though it is not
changed. It is strongly recommended to de-select it, else will the serial
communication be stopped unnecessarily.

Preliminary Actions for Online Upgrade

Put your process in a stable state, in which you can perform an Online upgrade with
as little interference as possible. Basically, this mean that you should try to identify
a stage in the process where you will not receive alarm bursts, and where the process
can handle a time interval of a few seconds without I/O communication and
controller execution.

Use the 800xA System Status Viewer to make sure that all hardware units in the
controller is fully operational and with no warning or errors, do not proceed
otherwise.

Before performing an Online upgrade, ensure that all network cables are properly
connected to the controller and the network is functional.

For controllers using a redundant network configuration, ensure that both primary
and secondary network are operational before starting the Online upgrade
sequence.

Both primary and backup PMs must be available on the network(s) during the
Online upgrade process.

3BSE035980-600 A

435

Preliminary Actions for Online Upgrade Section 5 Maintenance and Trouble-Shooting

Online Upgrade of an AC 800M using CI857

Follow the guidelines below for a smooth Online upgrade of C1857 connected to the
INSUM system:

Some of these guidelines are related to the nine steps in the Online upgrade
Wizard in the Control Builder. See Online Upgrade Process on page 439.

* Set the parameter “FailSafe Heartbeat” on the INSUM TCP/IP Gateway to a
value that is 1/4 of the shortest “Failsafe TimeOut” on the connected INSUM
devices (MCUs and Circuit Breakers). Use the INSUM MMI or the INSUM
OS to set this value to the parameter.

* During the Online upgrade, CI857 disconnects from the INSUM system for
some time. Before CI857 disconnects from the INSUM system, it requests the
INSUM TCP/IP Gateway to continue sending Failsafe Heartbeat to all INSUM
subnets, until the CI857 reconnects.

* Since there is no redundancy for CI857, no commands can be sent to the
INSUM system and the measurement values are not updated during this time.

* The duration of the broken connection between CI857 and the INSUM system
depend on the upgradation of the firmware of CI857. If the firmware of CI857
is not upgraded, then it will be upgraded in the eighth step of the Online
upgrade Wizard (together with the remaining units). See Eighth Step —
Upgrading Firmware in the Remaining Units on page 444.

* After the Online upgrade, CI857 reconnects to the INSUM system and the
communication is reestablished.

e If CI857 does not reconnect within the expected time, the INSUM TCP/IP
Gateway stops sending Failsafe Heartbeat to the INSUM devices (MCUs and
Circuit Breakers) and they go to Failsafe.

* During the switching in the seventh step, the status of the INSUMReceive and
INSUMWrite blocks may be -5324 or -15 for up to 8 seconds.
ProcessObjInsumLib takes care of this internally. See Seventh Step —
Switching the Process Control on page 443.

» If an upgrade has been started and the communication between the CI857 and
the INSUM TCP/IP Gateway is interrupted during the third step, where
Redundancy is turned off, the upgrade will be terminated. See Third Step —

436

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Preliminary Actions for Online Upgrade

Disabling the Redundancy on page 441.

Expected Time for Online Upgrade of an AC 800M using CI857
The expected time for Online upgrade depends on the following factors:

e If the firmware is already up-to-date before the Online upgrade of the controller
and an upgrade of CI857 is indicated as “Not Available” in the second step of
the Online upgrade, the expected time is reduced. See Second Step — Selecting
Units to Upgrade on page 441.

* If an upgrade of CI857 is indicated as “Recommended” in the second step of
the Online upgrade, but the user decides not to upgrade, there will be a time
delay of 15 seconds after the switching in step 7, after which the INSUM
devices go to Failsafe.

* If an upgrade of CI857 is indicated as “Recommended” and the user decides to
do the upgrade, the communication between CI857 and the INSUM system is
broken two times. First, for some seconds during the seventh step, and later for
a longer time during the eighth step while the firmware is downloaded.

e If the CI857 does not reconnect within 300 seconds after the start of the
firmware download, the INSUM devices go to Failsafe.

* If an upgrade of CI857 is indicated as “Mandatory”, the communication
between CI857 and the INSUM system is broken at the switching in the
seventh step. This connection will not be reestablished until the upgrade of the
firmware of CI857. If the CI857 does not reconnect within 900 seconds after
the switching, the INSUM devices go to Failsafe. See Seventh Step —
Switching the Process Control on page 443.

Online Upgrade of an AC 800M using CI858

Consider the following for the Online Upgrade of an AC 800M using CI858:

ﬂ The version of CI868 Hardware Library connected in Control Builder project
must always be greater than or equal to CI868 Hardware Library running in the
CI868 Module.

ﬂ It is mandatory to have only one CI868 Hardware Library under Control Builder
Project Connected Libraries. That is, either 1.x or 2.x or 3.x CI868 hardware
library version must be connected.

3BSE035980-600 A 437

Preliminary Actions for Online Upgrade Section 5 Maintenance and Trouble-Shooting

After CI868 Firmware upgrade, it is mandatory to re-import the SCD file to
generate new CCEF file compatible with new IEC 61850 stack.

During CI868 Firmware Upgrade, IEC 61850 Communication is interrupted until
CI868 module is up and running.

Settings for High Integrity Controller

Access Enable

Enable the Access Enable switch in the controller to complete the Online upgrade.
Enable Extended Timeout for Safe Peer to Peer Clients

Enable the Access Enable switch in the controllers acting as Safe Peer to Peer
Clients (Safe MMS) to the system, to extend the timeout handling in the
communicating Control Modules.

Handover Limit Time

Before the Online upgrade, the Handover limit time in the High Integrity Controller
must be specified in the Controller Settings dialog, and this setting must be
downloaded to the controller. This is important because the time out cannot be
adjusted without redoing the whole Online upgrade procedure.

438

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Online Upgrade Process

Online Upgrade Process

ﬂ All components of the controller must be fully operational before starting the
Online Upgrade process and before performing the switch.

Even though this subsection is based on the Online upgrade Wizard, it merely
describes the process in a conceptual manner. Do not try to run the Online upgrade
Wizard solely on the basis of these steps.

It is strongly recommended to run the Wizard on a Control Builder node having
direct connection to the Control Network. There should not be any routing
between the Wizard and the controllers.

To get a complete and comprehensive guidance to a successful Online upgrade;
study this conceptual explanation and then carefully follow the instructions given in
the subsection Running Online Upgrade on page 444.

Primary, Backup and Trainee are three specific roles for redundant hardware units
during the Online upgrade procedure. Consider the following to avoid any
misunderstanding of the meaning for these roles:

* Primary is a process role responsible for executing the application(s).

* Backup is a process role responsible for maintaining redundancy. This means
basically taking over the execution of a running application in case the Primary
shuts-down.

* Trainee is a process role the backup unit enters after disabling redundancy in
the Online upgrade.

If you decide to terminate an upgrade procedure by clicking Cancel in the

@ Wizard, there are more or less serious consequences attached to that decision.
Needless to say, performing an Online upgrade demands thorough planning
before execution! There are some steps in the upgrade procedure that are more
critical than others.

For example (step 4 and 7), interrupting the procedure after upgrading firmware
in the fourth step will leave you with different firmware versions in the PMs, thus
no possibility to easily regain redundancy. After such an interruption in the fourth
step, you have to run Online upgrade again or do an Off line upgrade.

3BSE035980-600 A 439

Online Upgrade Process

Section 5 Maintenance and Trouble-Shooting

Wizard at least one more time.

@ If the Online upgrade process should be interrupted or fail, always try to run the

If your upgrade process still fails, study the subsection Solving an Interrupted

Online Upgrade on page 445.

The Online upgrade process can be performed using the nine steps in the Online

Upgrade Wizard, as follows:

First Step — Analyzing the Project

The first step starts the Wizard and initiates the Online upgrade sequence. The
Wizard begins by analyzing the project in the Control Builder and in the controller,
and checks if an Online upgrade is possible. The analysis checks that:

* Hardware configuration is correct, a redundant controller with supported CI

units only.

* All configured hardware units are available and functional.

* The applications in the redundant controller and in the Project Explorer are the
same. Thus no additional changes in the Control Builder applications are
permitted, besides connecting the new (hardware) libraries delivered with the
800xA for AC 800M system extension. See Restrictions for Online Upgrade on

page 434.

Fi’edundant controller:

Cl1

PM 1

Cl2

PM 2

Primary

Backup

Figure 190. A schematic illustration of a redundant controller configuration before

start of Online Upgrade.

ﬂ The purpose of the figure above and figures in the following steps, is to show the
components of a redundant controller and their different roles during the upgrade.
Hence, the figure does not illustrate how to connect a redundant control system.

440

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Online Upgrade Process

Second Step — Selecting Units to Upgrade

The Wizard performs a firmware version check on the redundant controller (PM and
CI units) and another in the hardware libraries. An analysis compares the result of
the read-outs and lists mandatory firmware, recommended firmware and not
available firmware in a dialog box. The mandatory firmware must be upgraded, but
firmware listed as recommended can be skipped in the upgrade, since the existing
firmware is compatible with the new ones.

Third Step — Disabling the Redundancy

The Wizard lists which corresponding units that will be upgraded. The backup will
be disconnected from the redundant controller and from now on it will be
considered as a Trainee. After the backup PM is changed to a trainee its application
will be removed and the PM 2 can no longer work as a backup. Thus the control
system is no longer redundant, the system is singular.

Before: ; After:
Cl1 PM 1 [Cl1 PM 1
Primary [: Primary
| X
| 1
Cl2 PM 2 | Cl2 PM 2
Backup [Trainee

Figure 191. The redundancy is disabled and the backup is preparing for an
upgrade. Thus the role switches from Backup to Trainee.

ﬂ The redundancy line is marked with a cross to symbolize disabled redundancy. It
does not imply disabled communication, as the RCU cable or BC810/BC820 is
still physically attached. This means that PM 1 and PM 2 can still communicate).

ﬂ During Online upgrade of an High Integrity Controller with SM811 or SM812
and SIL3 applications, a hot insert with activation is always needed either to
regain redundancy after a successful Online upgrade, or if the redundancy has
been broken during an unsuccessful Online upgrade attempt. Activate digital
input 3 on the SM811 or SM812 after finishing the Online upgrade Wizard.

3BSE035980-600 A 441

Online Upgrade Process Section 5 Maintenance and Trouble-Shooting

Fourth Step — Upgrading Firmware

The firmware is downloaded to the backup redundant CI units (if any) and to the
Trainee.

This step provides three options:

1. Download firmware to the units and then wait until the upgrade is done (the
Next button can be selected),

2. Remove the unit and download the firmware from another system and then
insert the unit again.

A Refresh will verify that the upgraded units are physically present and have
correct firmware versions. A typical user-case for this option is when a unit has
been dismounted and upgraded elsewhere and then re-mounted afterwards
again. Selecting refresh helps you proceed to the next upgrade step without
downloading firmware a second time to the unit.

3. Proceed to the next step (only possible if all units are physically present and
already have correct firmware versions).

Singular CI units will not be upgraded at this time. Instead they will be upgraded
in step eight.

Fifth Step — Downloading Applications to the Trainee

Before the Control Builder downloads the application to the trainee the Difference
Report is displayed. Study the report and decide whether to accept the difference
report or not. It is completely normal that the report reflects different library
versions. If you do not accept the difference report, you will return to step 5.

Sixth Step — Deciding the Online Upgrade Handover Limit

Although Online Upgrade Handover Limit is a quite simple timer function in Online
upgrade, it still needs some considerations. At this stage the Primary is preparing to
switch over control to the Trainee. It is a critical step for the controlled process,

because during that time the task execution is halted. The Online Upgrade Handover

442

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Online Upgrade Process

Time consists of time for stopping applications in the Primary, copying and
transferring all application values, and handing over the control to the Trainee.

®

If the defined Online Upgrade Handover Limit time is exceeded, the Online
upgrade procedure will be interrupted, and a roll-back of control to the Primary
will take place. At the switch over control from Primary to the Trainee, a rollback
will conclude within the specified handover limit time.

If the roll-back procedure fails, the I/O channels will immediately go to their Output
Set as Predefined (OSP) values.

The suggested Online Upgrade Handover Limit in the Wizard is based on the value
in the controller settings. The Online upgrade accepts an Online Upgrade Handover
Limit of up to maximum 10 seconds (default is 3000 ms).

The Online Upgrade Handover Time is not equivalent to the total time that the
I/O channel values are frozen. When the new Primary starts up, the Applications
will start in the same way as at a “normal” warm restart after a download, for
example. All tasks will be started according to their priority, interval, and Offset.
This means that the Output freeze time is approximately equal to the Online
Upgrade Handover Time, plus task offset and execution time for the first scan,
plus delays incurred by higher-priority tasks.

Seventh Step — Switching the Process Control

Performing a switching means basically that the Online upgrade function sends a
switch command to the Primary to switch over alarm states, variable values etc, to
the Trainee and then resets itself. After the reset, the Trainee will exit its role and
enter the Primary role and take over the process control.

Before: | After:
Cl1 PM 1 [Cl1 PM 1
: Primary [: Trainee
X | X
I | 1
Cl2 PM 2 [Cl2 PM 2
Trainee [Primary

Figure 192. PM 1 and PM 2 are shifting roles. After this step the PM 2 will become
the Primary and execute the running application.

3BSE035980-600 A 443

Running Online Upgrade Section 5 Maintenance and Trouble-Shooting

Before:

Eighth Step — Upgrading Firmware in the Remaining Units

This step upgrades the remaining units in the redundant controller, which means any
single CI units, the previous primary CI units and the old Primary PM. Similar to the
previous forth step it provides three options, download firmware to the units and
then wait until the upgrade is done (Next button can be selected). The Trainee resets
and read the applications states from Primary. After that it becomes a backup and
you should have full redundancy again.

| After:
Cl1 PM 1 [Cl1 PM 1
, Trainee | Backup
X |
L I
Cl2 PM 2 [Cl2 PM 2
Primary | Primary

Figure 193. The redundancy has been re-established.

Ninth Step — Summarizing the Upgrade Process

The Wizard summarizes the results of the Online upgrade procedure. It is possible
to save the summary by using the Save Summary button.

Running Online Upgrade

This subsection assumes that you have made all the necessary arrangements in your
applications for an Online upgrade.

Make sure you have access to the Control Builder Online help. To make sure: On the
Help menu, click Help Topics. Control Builder Online help Welcome page opens.

The Online upgrade function will perform all necessary controller resets
automatically. Thus you should not try to perform any reset on the redundant
controller while running an Online upgrade.

Starting the Online Upgrade Wizard

From the Project Explorer hardware tree:

444

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Solving an Interrupted Online Upgrade

1. Right-click the controller and select Upgrade from the context menu. The
Online upgrade Wizard will open.

2. Click the Help button in the Wizard. An easy to follow 9-step instruction will
open and guide you through the Online upgrade.

The Online upgrade instructions end here in the manual, and continue in the Online
help!

Solving an Interrupted Online Upgrade

®

The solutions provided in this subsection assume that you have already tried to
restart the Wizard but failed to continue the Online upgrade process.

A PM can be marked as Uncertain. This means that the Wizard cannot yet
determine firmware version for that PM. If a PM is marked as Uncertain, it can
either mean that the PM has been upgraded in another system previously or the
Online upgrade was disrupted.

Error case handling different firmware versions in PM 1 and PM 2

The Online upgrade has been interrupted with failure, which implies that PM 1 and
PM 2 have different firmware versions. The current situation is that one PM is
running your process and the other one is not responding (dead).

Start by figuring out the cause for the interruption. A common cause is a too short
Handover Limit time. Then restart the Wizard again and continue upgrading
firmware in the remaining PM (the Wizard will automatically reset the dead PM).

Please note, this procedure has been changed since previous versions of this
book.

Error case handling different firmware versions in Cl 1 and CI 2

The Online upgrade has been interrupted with failure which implies that CI 1 and
CI 2 have different firmware versions.

Start by correcting the PM firmware version according to the suggestions given
above in (PM 1 and PM 2). Then restart the Wizard again and continue upgrading
firmware in the remaining CI unit(s).

3BSE035980-600 A 445

Trouble-Shooting Section 5 Maintenance and Trouble-Shooting

If the failure should still remain then you must down/upgrade the CI unit(s) in
another control system (by Hot Insert).

Hot Insert or more precisely the insertion of a SM811 or SM812 into a running
system affects SIL3 applications. The applications will be stopped while getting
synchronized. When running SIL3 applications, the start of the synchronization
must be accepted by the user, to configure the inserted module. This is performed
by activating digital input 3 on the SM811 and SM812.

Error case handling when I/O Channels have returned to OSP

The Online upgrade has initially been interrupted due to time-out and then failed to
rollback the application to Primary. The consequence is that the I/O channels have
returned to OSP and neither one of the PMs are running the process. At this stage,
there is no possibility for Online upgrade. You must start over by performing a
complete reset on all units and then begin downloading firmware and applications
again.

Trouble-Shooting

General

When a control system error occurs, it is important to investigate it as soon as
possible. In doing this, the possibility of finding and eliminating the problem will be
substantially increased. The reasons are:

* The personnel involved will not have forgotten what happened.
* The application software involved will not have been changed.
* The systems involved will not have been changed (location, setup etc.).

* You may need a work-around quickly, to be able to continue your work.

446

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

* Some errors only occur under very special circumstances and/or in special
hardware/software configurations. The person who reports the problem may
have the only installation/configuration where we know it could occur.

ﬂ A well-described error, with all vital information included, will always increase
the probability of correcting the error quickly and effectively. Error Reports on
page 493 provides some hints when writing an error report.

The task of trouble-shooting is usually very difficult, and requires a great deal of
intuition and ability to draw conclusions from known facts. This subsection aims to
provide some guidelines on solving problems.

Here are some basic troubleshooting questions which should first be answered.
* What is the problem?

* Isitaknown problem? Check the available information (for example, Release
Notes and Product Bulletins) and discuss it with colleagues.

* Has the system worked previously (with the same hardware)? If so, the
problem may have occurred due to poor installation or due to setup problems.

* Has anything been modified recently? The problem is often to be found in
modifications. If possible, revert to the previous state, and test.

* Can the problem be linked to any special event?

* Isit possible to reproduce the problem?

Log Files

The Industrial IT products described in this subsection have built-in logging
routines that continuously write to log files. Log files will contain important
information whenever a failure occurs during a programming session, or when a
controller is running. These files and the crash files (see section Crash Dumps for
Analysis and Fault-Localization on page 467) are very useful for troubleshooting
and contain crucial information for analyzing malfunctions.

ﬂ If Control Builder is running on a terminal server the log files are saved in a
particular folder for the used session. For further information, see Running
Control Builder on Terminal Server on page 398.

3BSE035980-600 A 447

Log Files

Section 5 Maintenance and Trouble-Shooting

System Log File

The system log is created the first time Control Builder is started (or if there is no
log file), and is used to store general information concerning Control Builder.
Examples of information logged are start/stop of Control Builder and changes in the
setup of Control Builder via the Tools menu. The System log can be read via the
menu entry Tools > Maintenance > Analysis > System Log. Figure 194 shows an
example of the system log.

System.log
S Date Time Category User EventDescription
| 2002-04-24 11:05:15 SYSTEMOP Default System log created at station 10.46.41.20
| 2002-04-24 11:05:15 SYSTEMOP Default Application is starting
|

2002-04-24 11:06:27 SYSTEMVAR Manager Value of system variable PromptCommentOn
Save manually changed to false

Figure 194. An example of the system log
The path and file name of the System log are given in Table 33.

Table 33. The System log file path.

Denomination Path/Note

Control Path / File name

2;2?;; I\Iilog C:\ABB Industrial IT Data\Engineer IT Data('\
Control Builder M Professional \LogFiles\System.log
Note
Only one version of this file exists.

(1) The default working directory is shown.

Session Log Files

At start-up, Control Builder, OPC Server for AC 800M, MMS Server for AC 800M,
SoftController, and the Tool Routing Service for AC 800M, automatically creates a
session log file on the hard disk. If the controller is a High Integrity controller, it
also creates a Controller Configuration Integrity log. These files contain information
generated during one session, that is, from the time the product is started, until it is
stopped. New files will be created upon each new start-up.

448

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

At start-up, information about hardware and software versions, and later,
information on system events, such as mode changes (Offline to Online, or vice
versa) and error print-outs, will be logged in the session log. For High Integrity
controllers, the Controller Configuration Integrity log will show the result of all test
compilations that are made to make sure that the controller is not corrupted. Session
logs are continuously updated in a running system, and whenever a problem occurs
itis a good idea to look at the logs to see if there are any printouts. It is possible to
read log files for the current session via the menus.

ﬂ Session logs are saved from the previous nine sessions. It is important to save a
file containing information about a problem, with a new name, before it is
overwritten.

Ten successive start-ups will generate the following session log files; Session.log
(from last start-up), Session.log _bak1 (next to last), Session.log _bak?2, etc to
Session.log _bak9 (the first start-up or oldest saved start-up). This means that when
you start-up the system a eleventh time Session.log _bak9 will be overwritten and
the previous Session.log will be renamed as Session.log _bak1 and a new
Session.log will be created.

ﬂ You will lose the oldest saved file because all the files are pushed one step after
each start-up. This means that (_bak8) is pushed to (_bak9), (_bak7) to (_bak8)
etc and Session.log to (_bakl).

* Session.LOG

* Session.LOG_bakl1

. Session.LOG_bakn.......
* Session.LOG_bak9

s+ SessionEOGbak9

Below is an excerpt from Control Builder session log.

3BSE035980-600 A 449

Log Files

Section 5 Maintenance and Trouble-Shooting

I: Information
W: Warning
E: Error

Starting MMS Server
MMS Server running
MMS Server connected

Product : Control Builder M Professional
Version : 3.1/0b3 (Build 0.44.2.2)
Created : 2002-04-16

ABB Automation Products AB

Working folder is: C:\ABB Industrial IT Data\Engineer IT Data\Control Builder M Professional 3.1
Microsoft Windows 2000 Professional version 5.0 Service Pack 2 (Build 2195)
Memory information
TotalPhys =511 MB, AvailPhys =347 MB
TotalPageFile = 1248 MB, AvailPageFile = 1081 MB
Heap size = 64 MB
Character set: West European/American
12002-04-19 19:33:22.570 MMS Server is running
1 2002-04-19 19:33:22.601 .
| 2002-04-19 19:33:22.633 Network address is 10.46.41.20, 172.16.84.163.
1 2002-04-19 19:33:23.914 Supported hardware definition syntax: 2.0
1 2002-04-19 19:33:23.914 Reading hardware definitions...
1 2002-04-19 19:33:26.023 342 hardware unit definitions created,
1371372 bytes heap used
1 2002-04-19 19:33:26.148 Mirror: No Aspect Server found. Mirroring not activated.
| 2002-04-19 19:33:26.914 License Manager: Hardware ID, 00-03-47-68-8E-A5 (Ethernet)

Figure 195. The first section of the Control Builder session log. Pay special
attention to Warnings (W) and Errors (E)

450

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

The paths and file names of the session logs are given in Table 34.

Table 34. Session log file paths.

Denomination

Path/Note

Configuration
Integrity Log

Control Path / File name
Builder M C:\ABB Industrial IT Data\Engineer IT Data("\
session log Control Builder M Professional \LogFiles\Session.log
Note
Session log files stored from the last 9 sessions:
Session.log
Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9
Controller (This log is only generated for High Integrity controllers.)

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data("\

Control Builder M Professiona\LogFiles\CCI_Session.log
Note

Session log files stored from the last 9 sessions:

CCI_Session.log

CCI_Session.log_bak1, CCl_Session.log_bak2, CCI_Session.log_bakn...
CCl_Session.log_bak9

OPC Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Datal'\OPC Server for AC 800M\
LogFiles\Session.log

Note

Session log files are stored from the last 9 sessions:
Session.log

Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

3BSE035980-600 A 451

Log Files

Section 5 Maintenance and Trouble-Shooting

Table 34. Session log file paths. (Continued)

Denomination

Path/Note

MMS Server
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data('\ MMS Server for AC 800M\
Session.log

Note

Session log files are stored from the last 9 sessions:

Session.log

Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

Tool Routing
Service
session log

Path / File name

C:\ABB Industrial IT Data\Control IT Data(*\ Tool Routing Service for AC 800M \
Session.log

Note

Session log files are stored from the last sessions:

Session.log
Session.log_Bak

SoftController
session log

Path / File name
C:\ABB Industrial IT Data\Control IT Data(*\ SoftController \ Session.log
Note

Session log files are stored from the last 9 sessions:
Session.log

Session.log_bak1, Session.log_bak2, Session.log_bakn....
Session.log_bak9

(1) The default working directory is shown.

452

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

OPC Server (Session.log) Example

The list example shows an extract from an OPC Server session log file and how to
interpret the given data in four separate error occurrences. Important information
has been highlighted with typeface bold.

E = error, AE = Alarm Event, DA = Data Access.

E 2003-11-07 11:11:54.867 On Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:03.335 On Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

E 2003-11-07 11:12:04.913 Off Unit= SubAlarmEvent ConnectionError-
172.16.0.11 OPC Server (6500) Connection error to AE subscribed
controller

E 2003-11-07 11:12:27.398 Off Unit= SubDataAccess ConnectionError-
172.16.0.11 OPC Server (5500) Connection error to DA subscribed
controller

1. The first event description tells us that the OPC server lost connection (On) to
controller for Alarm and Event subscription (and when this error occurred).

2. The second event description tells us that the OPC server also lost connection
(On) to controller for Data and Access subscription.

3. The third event description tells us that the OPC server regained connection
(Off) to controller for Alarm and Event subscription.

4. The forth event description tells us that the OPC server regained connection
(Off) to controller for Data and Access subscription.

As you can see, letter (E) stands for error and it occurs both when error activates
(On) and when the same error is gone (Off).

3BSE035980-600 A 453

Log Files

Section 5 Maintenance and Trouble-Shooting

Control Builder Start Log

Control Builder creates a Start Log file for logging the last Offline to Online transfer
(in Test or Online mode). Information, such as warnings and error messages, will be
logged. The Start log is very useful when investigating errors that might occur
during or just after an Offline -> Online transition. Sometimes the Start log will give
a natural explanation of what at first looks like an error (for example, lost Cold
Retain values).

The nine latest Start logs are saved.

It is important to save a file containing information about a problem, with a new
name before it is overwritten. Furthermore, check that the date and time in the
Start log correspond with the time when the problem occurred.

The path and file name of the Control Builder start log, are given in Table 35.

Table 35. The Control Builder start log file path.

Denomination

Path/Note

Control

log

Builder M Start

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data('\
Control Builder M Professional\LogFiles\startlog.txt
Note

The nine latest Start log files are saved:

startlog.txt

startlog.txt_bak1,startlog.txt_bak2, startlog.ixt_bakn....
startlog.txt_bak9

(1) The default working directory is shown.

454

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

Field Bus Parameter Log Files

During compilation and simulation, CI851, CI854 and CI860 master parameters
will be automatically calculated.

The calculation is performed for all controllers in the project and for all masters
connected to the controllers. The result is sent to text files, which is stored in the
same place as the Control Builder log files. The text files have no backup, and are
replaced at every compilation and simulation.

The path and file name of the Field bus parameter log files, are given in Table 36.

Table 36. The Field bus parameter log files path.

Denomination Path/Note

Clg54 Path / File name

parameter log | C:\ABB Industrial IT Data\Engineer IT Data('\

file Control Builder M Professional\LogFiles\Profibus_DPV1_Calculation.txt
Cl860 Path / File name

parameter log | C:\ABB Industrial IT Data\Engineer IT Data("\

file Control Builder M Professional\LogFiles\FF_HSE_Calculation.txt

3BSE035980-600 A 455

Log Files

Section 5 Maintenance and Trouble-Shooting

Device Import Wizard Log File

When Device Import wizard is used a log file is created. If any failure during the
import occurs, errors and/or warnings are written to the log file, together with a text
describing the error/warning.

For a successful creation of a hardware definition file the log file contains some
entries: date and time of use, version of wizard and parser component, contents of
the device description file and contents of the generated hardware definition file.

When the file size of a log file reaches 10MB it will be renamed next time the
Device Import Wizard is invoked and a new log file is created. If there are an backup
file at that time, it will be deleted.

Table 37. The Device Import Wizard log file path

Denomination

Path/Note

Device Import
Wizard log file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data("\
Control Builder M Professional\LogFiles\DIW.log

(1) The default working directory is shown

PROFINET configuration log file

The Control Builder creates a log file PROFINET_Configuration.txt during
download. This log file will have the result of the download compilation for the
current and previous configurations. The log file can store data upto 10 MB and is
stored in the LogFiles directory in Control Builder. The current compilation result is
stored at the end of the log file.

If the log file exceeds the maximum size of 10 MB, then the file is automatically
saved as PROFINET_Configurationl.txt and a new
PROFINET_Configuration.txt is created. A maximum of nine old log files will be
saved before the oldest file gets overwritten. The log file also contains internally
calculated data that are not available in the Control Builder.

456

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

Table 38. The Device Import Wizard log file path

Denomination

Path/Note

PROFINET
Configuration
log file

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data("\
Control Builder M Professional\LogFiles\PROFINET_Configuration.txt

(1) The default working directory is shown

Control Builder System Information Report

The system information report is a list of hardware, software and setup information
for an engineering station. This information is generated by a menu command and
presented in a text editor.

To generate a new report perform either of these two alternatives.
e Select menu Help > About Control Builder M > List all Information

* In the Control Builder Setup Wizard, click Show Settings button.
This alternative generates almost the same information as the alternative above,
but fewer Environment variables are printed.

It is important to generate a new file containing information that was valid at the
time the problem occurred.

The path and file name of the Control Builder M System information report file are
shown in Table 39.

Table 39. The Control Builder system information report file path.

Denomination

Path/Note

Control
Builder M
System
information
report

Path / File name

C:\ABB Industrial IT Data\Engineer IT Data(t\
Control Builder M Professional\LogFiles\ SystemInformation.txt

(1) The default working directory is shown.

3BSE035980-600 A 457

Log Files

Section 5 Maintenance and Trouble-Shooting

Heap Statistics Log

There is heap statistics log file for SoftController. Every time a message ‘“memory
full” occurs (see Figure 196) in these products, the system software will
automatically generate a heap statistics log file containing information about the
content of the heapl.

If “memory full” occurs in a situation that cannot be explained as normal, then this
file should be included in an error report to your supplier’s service department.

When a system is unable to store more information in the heap, an error message
will be displayed. In most cases (more than 98%), this is due to an attempt to store
too much information in too small a heap. If this occurs for a product running on an
engineering station, increase the heap size for that product, using the Setup Wizard.

%

bdemany full. Do you want to save your project before restart?

Figure 196. The “memory full” message.

The paths and file names of the heap statistics log files are given in Table 40

Table 40. The heap statistics log file path

Denomination

Path/Note

SoftController
heap statistics
log

Path / File name

C:\ABB Industrial IT Data\Control IT Data("\SoftController \heapstat.dat
Note

The file is intended to be stored and included in an error report.

Controller System Log

Controllers have a circular log buffer that can hold a certain amount of information,
normally all information that has been generated during the last 5 to 8 start-ups.

1. A product, for example, a soft controller, uses a general memory area to store information. This area is called a
heap. In the engineering station this area does not necessarily reside in the RAM memory.

458

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

A lot of the information gathered in a controller log file can be of great assistance,
but a controller file is circular, which means that the last error often disguises more
important previous errors. This means that the original error can be hard to discover.
Therefore, you are advised to first save the log file to a safe location (no risk of
deleting history) and then fault-find your way back. After renaming the first
controller log file, it is safe to fetch as many controller log files as necessary.

The Controller System log is never deleted. Provided that the battery backup is
working properly, the information can be retained during a power failure. This
function makes it possible to restart a faulty system immediately to regain control of
the process, without losing vital information about the error.

You must first save the Controller system log file on a safe location before fault-
finding; it is much more difficult to identifying the original error after several
startups.

The recommended way to access the Controller System log information is to fetch it
via Control Builder. Selecting Tools > Maintenance > Remote System... will
show a Remote System dialog, see Figure 197.

[m Remote System @1

Enter cantraller identity:

172.16.12.100 [Update |

Show Remote Systems >]

endor, ABE
Model AC B00M FrBE4
WVergion: 5.1.425

[Show Downloaded ltems] [Show Firmware [nformation]
[Show MbAS " ariables] [Show Cantroller Log]
[Shaow MbS Connections] [Show Cantroller &nalysis]

[Show Diagnostic: for Communication Y ariables]

—
Figure 197. The Remote System dialog box.

3BSE035980-600 A 459

Log Files

Section 5 Maintenance and Trouble-Shooting

Enter the controller identity (the IP address) and click on the Show Controller Log
button to show the Controller System Log.

A redundant controller creates one log file for the primary unit and one for the
backup unit, hence two different log files.

The information will be shown in a text editor and also be stored in a file.

However, the first controller log can still be overwritten. The 'First-in-First-out'
principle is still valid for controller logs if you activate the ‘Show Controller Log’
function from the Project Explorer.

Figure 198 below, is an excerpt of the controller system log.

Product : AC 800M PMB864

version @ 5.1.0/0 (Build 5.1.42.5)

Created : 2010-01-20

ABB AB

controller Reset

Position Module Firmware Name pate version

0 PMEB64 Fw864 2010-01-20 5.1.42.5

OMEGA 2010-01-20 5.1.42.5
CPU UNit N/ A PMBG4A D
Backplane N/A TPE30 B
FPGA N/ A 1.3/0
CEX Master N/A 2.3
CEX Slave N/ A 1.1
cPU chip N/ A 0700
RCU N/ A 2.1

actual heapsize: 25200 kBytes

Figure 198. One section of the controller system log showing the actual firmware in
the controller.

The path and file name of the Controller System log file are given in Table 41.

Analyzing Controller Logs

During compile and download the logs are fetched, analyzed and saved if the
controllers configuration is empty and the logs contains crashes.

If the logs contains crashes then they are saved with following names:

Controller aa.bb.ccc.ddd yyyy-mm-dd-hh.mm.ss.ttt CPU.log
Controller aa.bb.ccc.ddd yyyy-mm-dd-hh.mm.ss.ttt BackupCPUlog
Controller aa.bb.ccc.ddd yyyy-mm-dd-hh.mm.ss.ttt Cl.log

460

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

If controllers configuration is empty but none of the logs contain crash information,
then the files are stored with following names indicating that this was a download to
an empty controller:

Controller aa.bb.ccc.ddd (empty) CPU.log
Controller aa.bb.ccc.ddd (empty) BackupCPUlog
Controller aa.bb.ccc.ddd (empty) Cl.log

aa.bb.ccc.ddd represents the IP-address.
yyyy-mm-dd-hh.mm.ss.ttt represents the current date and time.

The analysis is also done when logs are fetched through Remote System dialog. If
the logs contains crashes the file name includes date and time. If crashes are not
found in the logs, then they are saved with following default names:

Controller aa.bb.ccc.ddd CPU.log
Controller aa.bb.ccc.ddd BackupCPU.log
Controller aa.bb.ccc.ddd Cl.log

aa.bb.ccc.ddd represents the IP-address.

Controller Logs Sent to Computers at Shutdown of Controller

At a controller shutdown, the Controller System log is automatically sent out on the
Control Network as a broadcast message. It is fetched and stored in the working
folder for the MMS Server on all computers running an MMS Server.

ﬂ If the Controller System log, fetched via the Remote System dialog, after a
shutdown is empty due to a battery failure in the controller, the log will still be
present at all computers running an MMS Server. It is then possible to find it in
the following path:

C:\ABB Industrial IT Data\Control IT Data\MMS Server for AC 800M\
Controller aa.bb.ccc.ddd CPU.log

In this path you will also find the communication interface log file
(Controller aa.bb.ccc.ddd Cl.log).

See also Figure 95 for dumps analysis due to controller/crash.

3BSE035980-600 A 461

Log Files Section 5 Maintenance and Trouble-Shooting

Table 41. The controller system log and communication interface log file paths .

Denomination Path/Note
Controller Path / File name
System log All controllers:

Primary CPU | C:\ABB Industrial IT Data\Engineer IT Data{"\Control Builder M
Professional\LogFiles\Controller aa.bb.ccc.ddd CPU.log

Note

aa.bb.ccc.ddd is the IP address of the controller. See Controller System
Log on page 458.

The nine latest Controller System logs are saved:

Controller aa.bb.ccc.ddd CPU.log

Controller aa.bb.ccc.ddd CPU.log_bak1,

Controller aa.bb.ccc.ddd CPU.log_bak2, etc

Controller aa.bb.ccc.ddd CPU.log_bak9

Controller Path / File name

System log All controllers:
Backup CPU C:\ABB Industrial IT Data\Engineer IT Data®\Control Builder M
Professional\LogFiles\Controller aa.bb.ccc.ddd BackupCPU.log

Note

aa.bb.ccc.ddd is the IP address of the controller. See Controller System
Log on page 458.

The nine latest Controller System logs are saved:

Controller aa.bb.ccc.ddd BackupCPU.log

Controller aa.bb.ccc.ddd BackupCPU.log_bak1,

Controller aa.bb.ccc.ddd BackupCPU.log_bak2, etc

Controller aa.bb.ccc.ddd BackupCPU.log_bak9

462 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

Log Files

Table 41. The controller system log and communication interface log file paths (Continued).

Denomination

Path/Note

Communication
Interface log

Path / File name

All controllers:
C:\ABB Industrial IT Data\Engineer IT Data!"\Control Builder M
Professional\LogFiles\Controller aa.bb.ccc.ddd Cl.log

Note

aa.bb.ccc.ddd is the IP address of the controller. See Controller System
Log on page 458.

The nine latest Communication Interface logs are saved:

Controller aa.bb.ccc.ddd Cl.log

Controller aa.bb.ccc.ddd Cl.log_bak1,

Controller aa.bb.ccc.ddd Cl.log_bak?2, etc

Controller aa.bb.ccc.ddd Cl.log_bak9

(1) The default working directory is shown.
(2) The default working directory is shown.

The Communication Interface log (Example, the log in SM810, CI867 and

@ CI868) is not battery protected. Hence, the log will be erased when the power to
the controller is cut. The log includes vital information after a controller
shutdown due to safety measures e.g. task latency etc. It is important to restart the
AC 800M HI controller by pressing the INIT button, because this will preserve
the log. Note that any attempt of restarting the AC 800M HI controller by
toggling power will erase the log.

Fingerprint tool

The Fingerprint tool can be used online for collecting data, diagnostics, information
about settings, versions, log files and so on, from all AC 800M controllers within a
running system. The result can be used both prior to an upgrade to compare used
product versions and firmware with Release Notes and Field Alerts and for

troubleshooting. It will only take some minutes to run the tool also in large systems
and the result will be stored in a directory created by the tool itself.

The tool creates a new directory each time the tool is executed as in Figure 199. The
directory name is unique because it contains the time when the tool is started. The

3BSE035980-600 A

463

Log Files Section 5 Maintenance and Trouble-Shooting

directory contains up to ten files per controller. These files begin with the IP address
for each controller and do also contains its controller name. In addition the directory
contains two files named Fingerprint.txt and SessionLog.txt. as in Figure 200.

J AC_800M_FingerPrintData_2013-10-2313.17.13
J AC_800M_FingerPrintData_2013-10-2313.20.39

Figure 199. Directories created by the Fingerprint tool

There is one FingerPrint.txt file for each controller and one sum file containing the
information for all controllers according to Figure 200.

= 172.16.84.214 Controllerl BackupCPU.log

= 172.16.84.214 Contrellerl Cllog

= 172.16.84.214 Controllerl CPU.log

. 172.16.84.214 Contrellerl FingerPrint.tet

= 172.16.84.214 Controller] InjectedCPU.log

= 172.16.84.214 Contrellerl InjectedMetnfoCPU.log

= 172.16.84.214 Controllerl Module Bus Fail Counters.log
= 172.16.84.214 Contrellerl Module Bus IO Revisions.log
= 172.16.84.214 Controllerl Metwork Information.log

= 172.16.84.214 Contrellerl Thread Execution.log

= 172.16.84.230 Controller2 BackupCPU.log

= 172.16.84.230 Controller2 Clleg

= 172.16.84.230 Controller2 CPU.log

. 17216.84.230 Contreller2 FingerPrint.tet

= 172.16.84.230 Controller2 InjectedCPU.log

= 172.16.84.230 Contreller2 InjectedMetinfoCPLU log

= 172.16.84.230 Controller2 Network Information.log
= 172.16.84.230 Contreller2 Thread Execution.leg

_ FingerPrint.txt

| SessionlLog.bxt

Figure 200. Files in the Fingerprint Directory

464 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Log Files

If the controller is empty then the name EmptyController plus IP address will be
created.

The entire content of FingerPrint.txt files could be imported into Excel to make it
readable and used by other applications. It can also be imported to other text
handling tools for further filtration and analysis.

The Fingerprint tool can be opened from Engineering & Development\Control
Builder M\Tools\Fingerprint in installation media. The tool is also included in the
MMS Server for AC 800M installation.

An alternative option is to open the tool from a DOS prompt as in Table 42 and
specify which AC 800M controllers to collect data from by typing their IP addresses
after the tool name, for example, AC800Mfingerprint.exe 172.16.80.150, 0or
to create a list of IP-addresses as arguments to the console application. If no
argument is specified, RNRP is used, else the provided list is used. The tool
communicates with the controllers in parallel, in order to gain performance.

It is not allowed to simultaneously run the tool and perform downloads to the
AC 800M controller(s). Therefore, it is not recommended to run the tool
cyclically either.

Table 42. Fingerprint Tool from DOS Prompt

Nr Command line Description

1 AC800MFingerprint The tool will use the RNRP in order
to get the IP-addresses of all
AC 800M controllers in the network.

The tool will operate in full

fingerprint.

2 AC800MFingerprint The tool will only communicate with
172.16.85.128 172.16.85.3 |the controllers with these addresses.
172.16.85.7 The tool will operate in full

fingerprint.

3BSE035980-600 A 465

Log Files Section 5 Maintenance and Trouble-Shooting

Table 42. Fingerprint Tool from DOS Prompt

Nr Command line Description
3 AC800MFingerprint As number 1 but the working
wd="C:\Temp directory is set to C:\Temp.
4 AC800MFingerprint As number 2 but the working
wd="C:\Temp" 172.16.85.128 |directory is set to C:\Temp.
172.16.85.3 172.16.85.7

System versions from SV5.0 SP2 and forward are supported. RNRP has to be
installed on the PC. Supported operating systems are: Windows 8, Windows 7,
Windows XP, Windows Server 2012, Windows Server 2008 and Windows Server
2003. Controller versions from SV5.0 SP2 and forward are supported. The tool uses
MMS and it uses the same communication services as the Control Builder.

The following data is collected from each controller:
* Version analysis data of the controller and the applications

* Firmware version information of the CPU and CI modules (For use prior to
upgrade or analysis.)

* Modulebus IO Revisions (For use prior to upgrade or analysis)
* Modulebus Fail counters (Information for IO problem analysis and so on)

* Clock synch status (SynchProtocol, ClockMasterStatus, TimeQuality and so
on)

* CPU load (To see if the controller is running with high CPU load.)

* CPU runtime (As reference to counter values etc during analysis.)

* Heap utilization (Used CPU memory, heap leakage analysis and so on)

e MMS Load

* MMS diagnostics (NrOfMMSConnections, NrTransactionsPerSec and so on)
* TAC diagnostics (Only available for SV 5.1 and later controllers)

* Thread execution information (Information for controller problem analysis and
SO on.)

466 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Crash Dumps for Analysis and Fault-Localization

* Tasks information (Only available for SV 6.0 and later controllers)

* CPU log, CI log and Backup CPU log (Also stored before any counters
overwrites the log.)

e Network information (Counters showing network information for analysis.)

* Dynamic protocol handler information

Crash Dumps for Analysis and Fault-Localization

If a crash occurs (in Control Builder, OPC Server, SoftController, MMS Server
for AC 800M, or the Tool Routing Service for AC 800M), two new files are
generated at the same location as the session log files. The first one is a dump file
and the second is a rewritten session log file. These two files contain crucial
information that should be delivered to the support personnel.

If a shutdown/crash occurs in an AC 800M Controller, a Post Mortem Memory
Image may be saved on a Backup Media card inserted in the controller. See also
Dump of Post Mortem Memory Image on page 220.

3BSE035980-600 A 467

Remote Systems Information Section 5 Maintenance and Trouble-Shooting

If a Control Builder crash occurs at 16:20 on the 19:th of May, then a dump file and
a rewritten session log file will look like:

ControlBuilderPro 2006-05-19 16.20.29.184.dmp
ControlBuilderPro 2006-05-19 16.20.29.184 Session.LOG

Remote Systems Information

A connected remote control system1 can be inspected and maintained from Control
Builder. This can be an important tool when troubleshooting the system.

Select Tools > Maintenance > Remote System to open the Remote System dialog,
see Figure 201.

f m_ Remote System @1

Enter contraller identity:

172.16.12.100 [Update |

Show Remote Systems >]

Vendor, ABE
Madel: AC 800M Pr864
Vergion: 5.1.425

[Show Downloaded ltems] [Show Firmware [nformation]
[Show MbAS " ariables] [Show Cantroller Log]
[Shaow MbS Connections] [Show Cantroller &nalysis]

[Show Diagnostic: for Communication Y ariables]

S—
Figure 201. Remote System dialog.

The “Show Remote System” function can only list nodes on the same physical
@ network! Thus, you must connect a Control Builder PC on the same Ethernet

network; you cannot Show Remote System on nodes beyond routers, sub-
networks etc.

Remote systems are controllers, OPC servers, and engineering stations connected to the same Control network
as your own local system.

468 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Remote Systems Information

The following remote system functions are available, see the Table 43 below. Click
on a button in the dialog to retrieve information.

Table 43. The available remote system dialog functions.

Menu Iltem Function

Show Remote Systems Shows a list of all addresses to the control
systems (including MMS process numbers)
connected to the same network as the requesting
system.

Show Downloaded Items Shows information about controller configuration
and about the application(s) running in the
selected remote controller system, such as
application name, application status, compilation
date and time, compiling engineering station
identity, and the checksum of the application. You
can also remove a running application here.

You can also access the source code report from
the Show Downloaded ltems dialog, see Source
Code Report Generated for Project in the System
800xA Control AC 800M Getting Started
(3BSE041880%).

Show Firmware Information Shows information from a controller, such as unit
position, type of hardware unit, name and version
of the current firmware and firmware creation date.
Firmware can also be loaded to selected
controllers here.

Show MMS Variables Shows all the MMS variables in the system.

Show Controller Log Shows the Controller System log, described in the
section Controller System Log on page 458.

Show MMS Connections Shows connection information about the remote
systems, such as IP address, server/client
function, identity of the connected system
(destination system), usage, and number and
maximum of transactions sent since connection
was established.

3BSE035980-600 A 469

Remote Systems Information

Section 5 Maintenance and Trouble-Shooting

Table 43. The available remote system dialog functions. (Continued)

Menu ltem

Function

Show Controller Analysis

Shows the Controller Analysis dialog that is used
to:

. Reset the Module Bus Fail Counters in the
selected controller.

. Get the selected result/data from the
controller.

The user can obtain results for "Heap Statistics",
"Module Bus Fail Counters", "Module Bus I/O
Revisions", "Network Information" and "Thread
Execution".

The respective result, obtained from the controller
log, is saved to a new log file. The file name of the
new log contains the "Controller ID" and the
selected result. For example, 172.16.85.187_Heap
Statistics.log.

Show Diagnostics for
Communication Variables

Shows a diagnostic overview of the internal and

external communication using the communication

variables in the controller. For details, see

Diagnostics for Communication Variables on page

471.

The dialog displays:

* Unresolved communication variables

* Different counters for errors/warnings, cycle
times, and timeout.

o Details about variable transaction in each
server connection and client connection.

. Out variables of the selected node.

ﬂ For further information, refer to Control Builder online help. Use the Help button
in the Remote System dialog, see Figure 201.

470

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

Diagnostics for Communication Variables

The diagnostics tool for communication variables can be launched from the
Remote System dialog of the selected controller. Click Show Diagnostics for
Communication Variables in the Remote System dialog.

The first window that appears is the overview window. This window is a modeless
window, that is, it is possible to bring up and work in other windows in parallel.

i@ 10.46.37.35:2 - Diagnostic Overview for Communication Variables ﬁ
! lUntesclved variables: 2 Show Unresolved Variables | i_ Show Out Variables]
| | Counters Very Fast Fast Nomal Slow Very Slow i
I Intemal Type Emors] (]] 0 0 |
| | Bxtemal Type Emors 1] 1]]] 0
Uncertains Wamings 0 0 14 0 0
Timeouts D 1} 14 0 0
Il | Mo Cycle Time 0 0 1390 0 0
Max Cycle time]] 201] 0
HAverage Cycle Time D 0 1996 0 0
| In From Variables/s Transactions Transactions.s Bpeded Tmnsa... Max Transactions..
10.46.40.145:2 1.0 137 05 05 05 i
Out To Variables/s Transactions Transactions/s Max Transactions.'s
10.48.40.145:2 035 137 0.5 0.5
Last reset time: 2010-03-04 13:24:41
(o) (ome) |

Figure 202. Diagnostic Overview for Communication Variables dialog

The Diagnostic Overview for Communication Variables dialog contains three panes
that display information about the communication variables that are communicating
through the applications in the selected controller.

3BSE035980-600 A 471

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

The information is cyclically updated. The update interval is set to 5 seconds.

Counters Pane

The first pane lists different counters for the communication variables in the
controller. Each column in the pane corresponds to a cycle time category of the
communication variables.

The counters display the following values corresponding to the cycle time category
in different columns:

* Internal type errors—Type mismatch during communication between
applications within this controller.

* External type errors—Type mismatch during communication with an application
in another controller.

* Uncertains/Warnings—Variables that are not updated within the requested time
interval.

* Timeouts—Variables that are not updated within the requested timeout interval.
* Min Cycle Time-The lowest detected cycle time.
* Max Cycle Time—The highest detected cycle time.

* Average Cycle Time-The average cycle time.

In From and Out To Panes

The second pane "In From" contains information about the external client
connections with respect to communication variables in the selected controller. The
third pane "Out To" contains information about the external server connections with
respect to communication variables in the selected controller.

Each pane contains columns for:

* Variables/s—An average value, calculated since last reset time.

e Transactions—Number of transactions since last reset time.

* Transactions/s—An average value, calculated since last reset time.

* Max. Transactions/s—Maximum number of transactions per second since last
reset time.

472

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

Expected Transactions/s—Number of expected transactions per second from the
client. This column appears in the In From pane only.

The Last reset time shows the time when the Reset button was pressed.

Buttons

There are seven buttons in the overview:

Show Unresolved Variables—Click to open the Unresolved Variables dialog.
Show Out Variables—Click to open the Out Variables dialog.

Reset—Click to reset the information in the controller. New values will be
fetched.

Details—Click to open the Detailed Diagnostics dialog for the selected client
connection.

Overview—Click to open the Diagnostic Overview for the selected server or
client connection.

Help—Click to open the online help topic for the diagnostic tool.

Close—Click to close the window.

3BSE035980-600 A

473

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

Show Unresolved Variables

@ 10.46.37.35:2 - Unresolved V... [[

Application_1::cvd
Application_1::cvE

b -

Figure 203. Unresolved Variables dialog

The Unresolved Variables dialog displays the list of unresolved variables. Select the
variable and click Search to open the Search & Navigation tool for the selected
variable.

ﬂ The Search works in Offline mode and when the setting "Iterative Search in
Online Mode" is set to false.

474 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Diagnostics for Communication Variables

Show Out Variables

_
il 1046.37.35:2 - Out Variables (5o e

cv31111
cvh

Figure 204. The Out Variables dialog

The Out Variables dialog displays the list of out variables in the controller.

3BSE035980-600 A 475

Diagnostics for Communication Variables Section 5 Maintenance and Trouble-Shooting

Details
(@ 2222 - 2.2.2.2 - Detailed Diagnostics = | i
Courters Very Fast Fast Marmal Slow Very Slow
Variables/s 268.0 269.2 270.3 24 2726
Transactions 216 27 218 215 220
Transactions/s 251.0 2521 253.3 2544 255.6
Max Transactions.s 2567 2578 259.0 2601 2612
Expected Transactions/s 2624 2635 2646 2658 2669
Last reset time: 2009-12-22 08:23:35
]

Figure 205. Detailed Diagnostics dialog

The Detailed Diagnostics dialog displays the information for the different cycle time
groups in a selected client connection. The following values are shown:

* Variables per second. An average value, calculated since last reset time.

* Number of transactions since last reset time.

* Transaction per second. An average value, calculated since last reset time.

* Maximum number of transactions per second since last reset time.

* Expected number of transaction per second. A value that is calculated at
compile time.

Click Overview to open the Diagnostic Overview (Figure 202) for the controller
that owns this client connection.

The information is cyclically updated. The interval is set to 5 seconds and it cannot
be changed.

476 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

Analysis Tools

Analysis Tools

V

Control Builder Tools

The Control Builder Tools menu contains more useful tools for troubleshooting.
Note that a great deal of the information is only valuable for your supplier’s service

department.

Select Tools > Maintenance > Analysis to open the following menu items, see

Table 44.

For further information, refer to Control Builder online help.

Table 44. The menu items of the Analysis tool.

Menu ltem

Function

Disable Double-buffering

Not useful for troubleshooting

Disable Information Zoom

Not useful for troubleshooting

Disable Clipping

Not useful for troubleshooting

Image Selector Info in Online
Mode

Not useful for troubleshooting

Image Selector Information

Not useful for troubleshooting

Show control modules in
Online Mode

Not useful for troubleshooting

Write Variable Memory

Used for counting modules and instances.

Write Exported Variables

Not useful for troubleshooting

Write Variables in View

Not useful for troubleshooting

Start log Shows the Control Builder Start log, described in
Control Builder Start Log on page 454.
System log Shows the Control Builder System log, described in

System Log File on page 448.

3BSE035980-600 A

477

Analysis Tools

Section 5 Maintenance and Trouble-Shooting

Statistics for Application

The user can get the statistics about the application, for example, the number of
instances that exists in the application. This is useful when the maximum number of
instances has been exceeded. From the context menu of the selected application,

select Statistics as shown in Figure 206.

File Edit View Toeols Window Help

A RER Y @

= §% PrObjExt [Production]
..... W Libraries
S @) Applications

(=P] Application 1 - (Co

i Cennected Lib
----- #) Programs
4 Controllers

Editor Enter
CMD Editor

& Reserve..

& Release Reservation...
&# Take Over Reservation...
+4 Refresh

Properties L4

Documentation...
Statistics

&+ Search Alt+F12
Rebuild Search Data

Mew '
Paste
24 Delete Del
Eﬁ Rename F2
Check

Figure 206. Obtaining statistics for the application

478

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting System Diagnostics

The maximum number of instances in an application is 65536. When this number is
exceeded, the following dialog is shown.

Too many instances in application.

Mext Continue Caricel

Figure 207. Error message shown at download, when an application has too many
instances.

System Diagnostics

System Diagnostics Function Block

The Basic library contains a function block type called System Diagnostics. You can
use this function block type to measure and display the following functions.

e Cyclic load resulting from task execution,
e Stop time and memory usage during a controller download,

A stop at each download occurs When a new application version is
downloaded. The length of this stop is mainly affected by the number of
variables marked as retain or cold retain. Each variable marked retain or
cold retain must keep the value at a download with warm restart. The
copying takes time and copying more values requires more time. The
attribute retain should only be set for variables if they really require such
an attribute, as this attribute increases the stop time during download of
program changes to the controller. When the new version of the
application has been created in the controller, the old application is
stopped (i.e start of stop time) then all values are copied from the old
application to the new. The new application version is then started (i.e end
of stop time). During the copying instances, the application exists in two
versions, one old and one new. This is the reason for the extra memory
needed.

* Current memory in use,

* Maximum memory used since the last cold start,

3BSE035980-600 A 479

System Diagnostics Section 5 Maintenance and Trouble-Shooting

e Alarm and event information,
. Total CPU Load,
* Ethernet statistics:
— number of data packages sent,
— number of sent data packages that were lost,
— number of data packages received,
— number of received data packages that were lost.

The System Diagnostics function block is, as default, located in one of the Diagram
folders of the Project Explorer tree, see Figure 208.

- @) Applications
B ----- ?‘, Application_1 - (Controller_1.Narmal)

----- I, Connected Libraries

B ----- & Diagrams

Diagrarml - (Controller_1.Fast)

Diagramd - (Controller_1.Mormal)
E ----- Diagram3 - (Controller_1.5low)
------- -'{; ApplicationInfo Applicationlnfo
E E PowerFailurelnfos PowerFailurelnfos
P setTime SetDT
P setTimeZone SetTimeZonelnfo

o E SystemDiagnostics SystemDiagnostics

Figure 208. The System Diagnostics function block

Values can be updated either on command or cyclically using the Interaction
Window, which is opened by selecting the System Diagnostics function block, right-
clicking, and then selecting Interaction Window.

ﬂ The System Diagnostics Interaction window is only available in Test/Online
mode.

480 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting System Diagnostics

System Diagnostics Interaction Window.

The System Diagnostics Interaction window contains system memory and program
download information. The interaction windows can be displayed in two versions,

Simple and Advanced.

The values shown in Test mode are not those valid in Online mode. You cannot
use this information to check in advance which controller size you have to

purchase.

The Simple Interaction window contains the following information:

Table 45. The Simple Interaction window

Function Description
System Displays the TCP/IP address of the supervised system.
Cyclic load Displays cyclic load due to task execution in percent.

Latest update

Displays the time of the last update.

Cyclic update

Cyclic update is activated by checking the check box.
Cyclic update interval is set in time format, for example 5 m
(5 minutes).

Total Load CPU

Shows the total CPU load for the controller. The total load
is available as a parameter of type dint, called
TotalSystemLoadPerCent.

Ethernet Statistics

By clicking the Ethernet button, you display Ethernet
statistics in a separate window.

This window shows the number of sent/received
packages, and how many of those that were lost. These
statistics are available as parameters. There are also
parameters for resetting the counters. See online help for
the SystemDiagnostics function block.

3BSE035980-600 A

481

System Diagnostics

Section 5 Maintenance and Trouble-Shooting

Click on the Advanced button, and the Advanced Interaction window will appear. It
contains the following additional information.

Table 46. The Advanced interaction window.

Function

Description

Memory size

The allocated heap size, see Figure 209.

Used memory

The part of the heap used in bytes and percent of the total
heap size.

Max used memory

The maximum part of the heap used in bytes and percent of
the total heap size.

Memory quota

The part of the total heap size available when program
changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.

Note. This setting is only used for a warning indication.

Stop time

Stop time during the last download.

Init peak memory

Memory used during initiation phase.

Used memory at
stop

The part of the heap used during the stop phase in bytes
and percent of the total heap size.

Max used memory at
stop

The maximum part of the heap used during the stop phase
in bytes and percent of the total heap size.

Memory quota at

The part of the total heap size available when program

download changes are sent to the controller. If the memory quota is
exceeded an error icon is displayed.
Alarm Event A summary of alarm and event information

In the System Diagnostics function block, “Memory size” is the total physical
memory, minus executing firmware. This is sometimes also called the “heap”.

482

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting System Diagnostics

Memory usage is also displayed in the dialog “Heap Utilization” which can be
displayed for each controller. The available memory is called “Non-Used Heap” and
the rest is called “Used Shared Heap”.

A A A

Y

Spare
(20-50%)
A Available Memory
Max “Non-used heap” .
Used ‘I‘\|/I_|emo:y Size
Shared eap
Heap
. 8-256 MB
Used Empty Project RAM
Shared v
Heap A
Used by Firmware

Executing Firmware

Y Y

Figure 209. Memory organization

SystemDiagnosticsSM Function Block

This function block displays the RAM usage on the SM810/SM811/SM812 module.
It also displays execution cyclicity and time for the SM diagnostic running in the
PM module. Update is made by an operator request or cyclically if decided in the
operator interface. Extreme values are locked and displayed. This locked
information may be reset by a button in the operator interface. The type of SM is
noted as well as if the SM does not exist.

3BSE035980-600 A 483

System Diagnostics Section 5 Maintenance and Trouble-Shooting

The object is non-SIL. The object can not be executed in the time critical task.

SystemDiagnosticsSM Interaction Window.

The interaction window contains information about the supervised system, the loads
on the System Memory, SM type, cyclic update rate, and startup status information.

ﬂ The values displayed do not have any physical reality.

484 3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting Error Symptoms

Trouble-Shooting Error Symptoms

Below are some examples of error symptoms and suggested measures.

Table 47. Examples of error symptoms and suggested measures.

Error Symptom

Measure

Control Builder fails.

1.Click OK.

2.Copy the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 467), the
Start Log and the Heap Statistics Log files (if there are
any).

3.Read the Session Log, and see if there is any
information that indicates the source of the problem.

4.Try to start Control Builder. If it starts, select
Help>About Control Builder M>List all information
in the Project Explorer and the Control Builder System
Information Report will be created.

5.Try to reproduce the fault, if possible. If the problem is
reproducible, export the project with all dependencies
and include the .afw file in the error report.

6.Check basic things, such as if the hard disk full.

7.1f the fault appears during Offline to Online transfer,
and it is possible to reproduce the fault, check the
message written in the message pane, just prior to
fault occurrence. This will give a hint about what
operation (for example, sorting, compiling) and what
application is involved in the problem.

8.Make an error report and include the log files.

A Memory Full message appears. The
Heap Statistics log (SoftController)
states that the heap is full.

Increase the heap size in SoftController, see Heap
Statistics Log on page 458. Open Help > About and
check the amount of free memory. Free memory should
not be lower than 30%.

3BSE035980-600 A

485

Trouble-Shooting Error Symptoms

Section 5 Maintenance and Trouble-Shooting

Table 47. Examples of error symptoms and suggested measures. (Continued)

Error Symptom

Measure

A Too many instances in application
message appears.

The maximum number of above 65534
instances has been reached.

1.Try to reduce your application, see Statistics for
Application on page 478.

Cannot create/open a control project. An
Action denied message appears.

License Error. When the Control Builder
connects to an 800xA system a Control
Builder license is checked out. If the
license does not exist or the license
count has been exceeded, a dialog
window appears on the screen,
displaying that the action was denied.

1.Close a running Control Builder client temporarily, in
order to release a license.

2.Contact your System Administrator to extend the
number of license features.

The MMS Server, OPC Server, Tool
Routing Service, or SoftController fails.

1.Click OK.

2.Locate the two crash dump files (see Crash Dumps for
Analysis and Fault-Localization on page 467).

3.Read the Session Log, and see if there is any
information that points to the source of the problem.

4.Make an error report and include the log file.

486

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting Trouble-Shooting Error Symptoms

Table 47. Examples of error symptoms and suggested measures. (Continued)

Error Symptom

Measure

The controller fails. The red F(ault) LED
is On or flashing and the green R(un)
LED is Off. See also Figure 95 on

page 220.

1.Save the Post Mortem Memory Image on a Backup
Media card inserted in the controller. See Dump of
Post Mortem Memory Image on page 219.

2.Press the Init push-button on the controller until the
Run LED starts to blink. Note that the controller will be
empty if the red F LED is lit, that is, the application
program has been deleted.

3.Fetch the Controller System log and save it, see
Remote Systems Information on page 468.

4.Study the log, and find the marked reason for the stop
(normally, at the end of the log).

5.Reload the application.

6.1f an OPC Server for AC 800M is involved in
communication, check the OPC Server function.

7.1f possible, try to reproduce the problem. If the
problem is reproducible, export the project with all
dependencies and include the .afw file in the error
report.

8.Make an error report and include the saved log files.
See Error Reports on page 493.

Note that behavior similar to the example above is when
there is no firmware installed in the controller (for
example, when a new controller has been installed).

3BSE035980-600 A

487

Common Reason for Shut-Down AC 800M HI Controller

Section 5 Maintenance and Trouble-

Common Reason for Shut-Down AC 800M HI Controller

A number of different safety measures are used for supervision which all is potential
reasons for a deliberate shutdown of the system. Some of the more common reasons
are listed below:

Table 48. Common reasons for shutdown

Measure

Initial solution for download

Problem solution

FDRT

Error text in log file
FDRT tests not finished

Increase the FDRT setting for the
controller to 10000 ms.

FDRT needs to be larger than the
sum of the first scan execution time
for all tasks in the largest
application executing in the
controller.

The first scan execution time of a
task is presented as Max execution
time in the Task Properties dialog.

Task latency

Error text in Cl log file
Latency in task

Increase the Accepted latency
setting for each task (default
10%, minimum 10ms, max.
100%).

* Run each task to get an idea
of execution time. Configure
the controller so that tasks are
not scheduled to run
simultaneously. Use the Offset
setting for tasks to prevent
them interfering with each
other. See Overrun and
Latency on page 178.

e Lettasks with low accepted
latency have higher priority

e Use different priority for all
tasks if possible.

488

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

Common Reason for Shut-Down AC 800M HI

Table 48. Common reasons for shutdown

Measure

Initial solution for download

Problem solution

Modulebus Scan Time

Error text in log file

Modulebus: Scan time
error

Increase the modulebus scan
time.

The default setting is 100 ms

with also is the maximum value.

Calculate the minimum scan time
possible for the I/O configuration
that is used, using the formula in
section Modulebus Scanning of
Digital/Analog modules in the
System 800xA System Guide
Technical Data and Configuration
(3BSE041434*).

Set the modulebus scan time to a
value as high as possible but
higher than the calculated
minimum value and lower than the
interval time of the fastest task
using I/O signals.

A Supervision function
implemented in the controller
generates a system alarm if the
time taken to scan all modules
exceeds the configured value +10
ms. If the configured value is set to
0, then the Supervision is disabled.

3BSE035980-600 A

489

Common Reason for Shut-Down AC 800M HI Controller

Section 5 Maintenance and Trouble-

Table 48. Common reasons for shutdown

Measure

Initial solution for download

Problem solution

Collection of Cold Retain
Values CoRV (only SIL3)

Cold Retain values are stored
cyclically for SIL3 applications. If
storing fails, it leads to a failed
warm restart after power fail.

Error text in log file:
a)Failure - CoRV saving
in PM

or

b) Time-out during
collection of CoRV data
in SM

The collection of Cold Retain
values has failed for a SIL3
application.

a) Select Tools > Maintenance >
Analysis > Write Variable Memory
to find the next error message
starting the variable identified as
the root of the problem e.g.

CRC error detected.
POUInstance index: 2,
Varoffset: 127

Analyze why the variable is
detected as different between PM
and SM, e.g. to check if the
variable is an output parameter
from an NonSIL/SIL restricted
function.

b) The controller load is too high to
finish the collection of Cold Retain
values in time. If persistent, this will
lead to a failing warm restart at
next power fail.

Cold Retain Values missing
for SIL3 application at
power fail restart

Controller shut down at power
fail warm restart with error text in
log file:

Invalid CoRV data
detected for some SIL-3
application

Restart controller and be aware of
system events indicating problems
with Cold Retain storage for SIL3
applications. Correct any problems
as described above.

490

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

Common Reason for Shut-Down AC 800M HI

Table 48. Common reasons for shutdown

Measure

Initial solution for download

Problem solution

Modulebus Discrepancy

Modulebus frame discrepancy
Example of text in log file:
4180 MBM1 SM vs PM CRC32
fail ad 0x44 (1,3,ES)
E: Modulebus frame
discrepancy

Address AccessType

Data (bin) Unused
To Fr Mi Ma Ci

PM: 404 WriteDigital
0100010101010101
00000000 44 00 00 0A 10
SM: 404 WriteDigital
0101010101010101
00000000 44 00 00 0A 10

The rows beginning with PM: and
SM: shows the data that has
shown a discrepancy.

Find the affected 10 unit address
and compare the bits to find out
what channel that has a
discrepancy. After the channel is
located; analyze the application
code used to manoeuvre the signal
to find out if any nonSIL/SIL
Restricted functions is used which
leads to this discrepancy

ﬂ The Error printouts referred to in Table 48, will only be presented in the CI log
file.

For more information, see Error Handler Log Entries on page 430.

Restart after a controller shutdown

Always restart the PM with the flashing F(ault) LED by pressing the INIT push
button. The backup PM will then automatically be restarted as well.

After a shutdown of a redundant Controller it’s important to restart the PM that was
running as primary at the time of the shutdown in order to get valid information.
This PM is identified by a flashing F(ault) LED. Note that the F(ault) LED can
temporarily be On (steady) while a Post Mortem Memory Image is written to the
Backup Media card or flash rapidly (10 Hz) to indicate that a Memory Image is
waiting to be written to a Backup Media card, as soon as a card is inserted in the
PM, see Figure 95 on page 220 for more details.

3BSE035980-600 A

491

Connection to Aspect Server Section 5 Maintenance and Trouble-Shooting

Controller Log
E 2004-12-08 15:01:24.539 ErrorHandler SM: Latency in task
with parameters: 1000 11 (1,4,ERS)

This PM has been intentionally stopped.

Reason:

- CPU stall timer has expired (Acknowledged)

- Manual shutdown was requested

Press init button or remove power to restart...

Cllog
I 2004-12-08 15:01:24.248 (EHTask) [ERRORHANDLER] Send
ErrorReport to PM. ('Latency in task with parameters:',6 Sev =

4, ActionsToTake = 0xf)

Connection to Aspect Server

When the connection to the Aspect Server is broken, the Control Builder does not
automatically indicate the loss of connection. However, if the user runs any action
that requires the Aspect Server to be accessed (for example, saving or refreshing a
type or program), a message is displayed.

If the connection to the Aspect Server is broken while some configuration is being
saved in Control Builder, the Control Builder might stop functioning. The solution
is to re-establish the connection to the Aspect Server, or to stop the Control Builder
process using Task Manager.

492

3BSE035980-600 A

Section 5 Maintenance and Trouble-Shooting

Error Reports

Error Reports

An error report contains information to the problem in question. A detailed report is
particularly valuable if your supplier’s service department is to be involved.

The following information should always be included in an error report.

Name of the person reporting the error (and the project, site, customer, etc.).
Product (including the type of product and version).

A listing of all information from the faulty system, such as the appropriate logs
and reports, see Dump of Post Mortem Memory Image on page 219 and Log
Files on page 447. The latter includes a great deal of information such as
software version and revision, setup, etc. If the fault occurred during, or just
after downloading a new version of the application program, the Control
Builder Start Log and the Control Builder Session Log from the engineering
station that performed the download should be included. Whenever a problem
involving I/O handling occurs, it is very important to include a complete
description of the I/O configuration.

A description of the problem. Add all information that could help solve the
problem, for example, what happened just before the error occurred, and other
important circumstances. If it is possible to reproduce the error, describe the
circumstances under which the error occurs. Sometimes it is advisable to create
a small application to demonstrate the error, and add it to the error report.

If several systems are involved, information about the system configuration must
be included (hardware type, etc.).

3BSE035980-600 A 493

Error Reports Section 5 Maintenance and Trouble-Shooting

494 3BSE035980-600 A

Appendix A Array, Queue and Conversion

Examples

In this section you will find examples on how to handle arrays, queues, and some

examples on how to use bit conversion functions.

Arrays

It is possible to create a one-dimensional array with elements of any type, that is, the
elements can be a struct with variables of any type, or a single variable of any type.
Using PutArray and/or CopyAurray, it is possible to build a tree structure of arrays.
Array elements are accessed direct via an index. A lower and upper boundary of the
index should be defined. The array must first be created using Create Array.

The size of an array is limited to 65,524 components (variables of simple data type).

Example

In this example, there is a data type trec/ with the components b (bool), i (dint), and

st (string).

The following variables are also needed:

Name Data Type Initial Value
MyArray ArrayObiject

Irec trect

Irect trect

Irec2 trect

Irec3 trect

Status dint

FirstScan bool TRUE

3BSE035980-600 A

495

Arrays

Appendix A Array, Queue and Conversion Examples

Create and initialize an array with 20 array elements of the type trecl.

Use an IF — THEN statement for the Create Array function and let it be controlled by
a variable, which is executed once during startup.
IF FirstScan THEN

FirstScan := false;
CreateArray (MyArray, 1,20, 1lrec,status) ;
end_if;

Set up values for the different variables:

lrecl.b := TRUE

lrecl.i := 123

lrecl.st := A variable contaning the string 'Hello'
lrec2.b := FALSE

lrec2.i := 27

lrec2.st := A variable contaning the string 'BYE'
lrec3.b := TRUE

lrec3.i := 53

lrec3.st := A variable contaning the string 'BYE'

Set up the array contents:

PutArray (MyArray,l,lrecl,status);
PutArray (MyArray,2,lrec2,status);
PutArray (MyArray,3,lrec3,status);

496

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples

SearchStructComponent

The array now contains the following:

SearchStructComponent

b = TRUE
1 i =123
st = 'Hello'
b = FALSE
2 |i =27
st = 'BYE !
b = TRUE
3 |1 = 53
st = 'BYE !
b = Undef
4 |i = Undef
st = Undef
b = Undef
20 |i = uUndef
st = Undef

SearchStructComponent is a boolean function which searches for a specific partin a
record component. The corresponding components in Struct are scanned to find a

part in the component which matches the SearchComponent.

Variable = SearchStructComponent (Struct, SearchIndex,
SearchCount, SearchStruct, SearchComponent, FoundStruct,
Status)

Table 49. SearchStructComponent

Parameter Data type Direction
Struct AnyType in_out
Searchindex dint in_out
SearchCount dint in
SearchStruct AnyType in_out
SearchComponent | AnyType in_out
FoundStruct AnyType in_out
Status dint in_out

3BSE035980-600 A

497

SearchStructComponent Appendix A Array, Queue and Conversion Examples

The data type SearchComponent is either a single variable or a record containing a
couple of variables corresponding to a subset of the record component in Struct. The
SearchComponent could be either a boolean, integer, real or string data type or a sub
record which contains these data types. The SearchRecord shall consist of a variable
of SearchType and variables of the data types as the remaining variables in the
record component and at the same positions.

—1 BE of koolean

|| ¥evA of string SearchComponent of
sl || KevB of integer SearchType
X of xTyvpe *
. ¥Y of ¥Tyvpe Y

-, 35 of string SearchType
., Keyh of string
KeyB of integer

\ /

SearchRecord *

BE of koolean
Key of SearchType
I oof xTwpe

¥Y of vTwpe

33 of =tring

1

Figure 210. An example of the SearchComponent and a SearchRecord.

The SearchComponent may contain structured data types but the match is only
carried out on the boolean, integer, real and string data types. The variables in
SearchComponent of string data types must have the same length and content for a
match. The content of string is not case sensitive and the space characters are treated
as any other character. On match the whole record component is copied to
FoundStruct and the function returns true.

498 3BSE035980-600 A

SearchStructComponent

Appendix A Array, Queue and Conversion Examples

A Record component

SearchRecord Struct
= ;ft EE of kboolean
EE of boolean H%jff- Keyh of string SearchComponent
Fey of SearchTvpe - - . EevE of integer of SEarchT‘,fpe
¥ of xTyvpe f z XX of xTvpe Tl
o DE ?‘f}?e AN o GE yType SearchType
SS of string . | 8% ot string KeyA of string
/ 4 KeyE of integer
SearchStructComponent = TRUE

III 5
/ l:[RESULT
#’ and FoundStruct
BE of boolean

y
SearchType E n
Keyh of string *
KeyB of integer ‘ EevhA of string
Searchindex KevE of integer
¥ of xTvpe
¥Y of vTvpe
33 of =tring

Figure 211. The working principal of the SearchStructComponent.

The search starts in the index Searchilndex + I and ends at the first equivalent
component located or, if there are no more sub-records, in the last component of the

record.
A maximum number of record components given by SearchCount are scanned. The
component, in which a match occurs, is returned in FoundStruct and the index is

returned in Searchindex.
Note that Searchindex always points to the last record component that was scanned,
even if no matching occurs. This index can then be used in a repeated call to find all

occurrences of SearchComponent within the record.

499

3BSE035980-600 A

SearchStructComponent Appendix A Array, Queue and Conversion Examples

Restrictions

The following data types in Struct will NOT be copied: QueueObject, ArrayObject
and tObject.

The status returns:

* (1 Success)
— The Search was successful

* (- 5 ErrTypeMismatch)
— 1: Found sub-record was not of the same type as the structRecord.
— 2: SearchComponent was not a subset of SearchRecord

* (- 6 ErrSizeMismatch)
— 1: SearchRecord was not of the same size as the StructRecord.
— 2: SearchComponent size is zero.

e (-30 ErrInvalidPar)
— 1: Searchindex was less than 0 or greater than the number of the Struct
minus one.
— 2: SearchCount was less or equal to zero.
— 3: SearchComponent has no valid components (i.e., boolean, real, integer
or string)

500 3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples

InsertArray

InsertArray

InsertArray (Array, Index, ArrayElement, Status)

Procedure: Inserts a new element in an array. All successive elements are moved one
step, and the last element overwritten. Inserts the contents of ArrayElement into the
record at position Index in the array Array. The records at position Index + 1 to
position LastIndex will be moved one position higher. The contents (even objects) of
the record at position LastIndex will be lost. Variables of the data type tObjects will
not be copied, unless the variable is an ArrayObject, then this array and its whole
tree structure of arrays will be copied into an identical tree structure. If the record at
position Index lacks some array in the tree structure, the array will be created.

Table 50.
Parameter Data type Direction
Array ArrayObiject in_out
Index dint in
ArrayElement AnyType in_out
Status dint in_out

3BSE035980-600 A

501

SearchArray Appendix A Array, Queue and Conversion Examples

SearchArray

SearchArray(Array, Searchindex, SearchCount, SearchElement,
SearchComponent, FoundElement, Status)

This boolean function searches the array Array for a certain component in an array
element. All elements in the array are scanned to find an element with a component
(e.g. a string, or an entire record) that matches the search variable component.

The component SearchComponent in the element SearchElement is tested for
equality with corresponding components in each array element. The function
returns true if there is a find.

The search starts in the index Searchindex + 1 and ends at the first equivalent
component located or if there are no more elements in the array to be scanned. A
maximum of number of array elements indicated by SearchCount are scanned. The
array element, in which a find occurs, is returned in FoundElement and the index for
the find is also returned in Searchindex.

Note that SearchIndex always points to the last element that was scanned, even if no
find occurs. This index can then be used in a repeated call in order to find all
occurrences of SearchComponent within the array.

An error status is returned if:

e the index Searchlndex points outside array limits.

* the counter SearchCount is less then or equal to 0.

* the element SearchElement is not of the same type as FoundElement.
* the element SearchElement has a different size than FoundElement.

* the SearchComponent is not a part of the element SearchElement.

502 3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples

SearchArray

Example

Table 51.

Parameter Data type Direction
Array ArrayObject in_out
Searchindex dint in_out
SearchCount dint in
SearchElement AnyType in_out
SearchComponent | AnyType in_out
FoundElement AnyType in_out
Status dint in_out

Table 52. Data Type Definitions

Name Data Type
trect Struct

b Boolean

i dint

s String
tSearchStruct STRUCT
b Boolean
SSR tSearchSubRec
tSearchSubStruct | Struct

i dint

s String

3BSE035980-600 A

503

SearchArray

Appendix A Array, Queue and Conversion Examples

Table 53. Variables

Name Data type Initial value
Array ArrayObject

HitBoolean Boolean

HitRec trec1

Lrec trec1

Irect trect

Irec2 trect

Irec3 trec1

Status dint

SearchRec tSearchStruct

FirstScan Boolean TRUE

Create and initialize an array with 20 array elements of type trecl.

The Create function may be in a Start_Code and in that case it is not necessary to
use the IF -THEN statement and Firstscan variable.

IF Firstscan THEN

Firstscan = false;
CreateArray (Array,1,20,1lrec, status) ;
ENDIF;

Set up values for the different variables e.g. via interaction objects:

lrecl.b <- TRUE
lrecl.i <- 123
lrecl.s <- "hello"
lrec2.b <- FALSE
lrec2.i <- 27
lrec2.s <- "BYE"
lrec3.b <- TRUE
lrec3.i <- 53
lrec3.s <- "BYE"

504

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples SearchArray

Set up array contents:

PutArray (Array,l,lrecl,status);
PutArray (Array,2,lrec2,status);
PutArray (Array,3,lrec3,status);

The array now contains the following:

Inidlex Contents
TEUE ™~
1 123 Element
"hello®
-~
FALSE .
2 27 - Component
'BYE '
TEUE
3 53
'BEYE '
4 undefined
20 undefined

Figure 212. An example of an Array.

Access the array by index:
Index = 3;
GetArray (Array, Index, lrec, status) ;

lrec now contains:
TRUE 53 "BYE "

Now access the array by searching. First set up the search component.
SearchRec.SSR.1 = 27;

3BSE035980-600 A 505

Queues Appendix A Array, Queue and Conversion Examples
SearchRec.SSR.s has its default value "BYE" Search a maximum of 10 array
elements for the search component. A find occurs where the integer element is 27
and the string element is "BYE", in this case at array index no 2. Start searching in
the first element number 1.
Index = 0;
IF SearchArray (Array, Index, 10, SearchRec, SearchRec.SSR,
HitRec, Status) THEN
IF Status > 0 THEN
HitBoolean = HitRec.b; (Save Boolean content of hit element)
ENDIF;
ENDIF;

Queues

A queue may consist of elements of any type, that is, the elements could be a struct
with variables of any type, or a single variable of any type. Queue elements can be
accessed at both ends of the queue, that is, only the first and last element can be
accessed, but any element in the queue can be read. When using PutFirstQueue and
GetFirstQueue, the queue act as a stack. When using PutLastQueue and
GetFirstQueue, the queue will act as a FIFO queue. The size of the queue is not
dynamic, and has to be defined. The number of elements in the queue is dynamic.

The size of a queue is limited to 65,524 components (variables of simple data type).

506

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples

Queues

Example 1

The following structured variable Item is needed:

Name Data Type Initial Value
b bool TRUE

i dint 123

st string 'Hello'
The following variables are needed:

Name Data Type Initial Value
data1 Item

data2 Item

Queue QueueObject

Status dint

FirstScan bool TRUE

flag1 bool

flag2 bool

Create and initialize an array with 10 elements of data type item:

3BSE035980-600 A

507

Queues

Appendix A Array, Queue and Conversion Examples

In an IF — THEN statement the CreateQueue function may be controlled by a first
scan variable.
if FirstScan then
FirstScan := false;
CreateQueue(Queue := Queue,
Size := 10,
QueueElement := datal,
Status := status);
end_if;
if flagl then
PutLastQueue(Queue := Queue,
QueueElement := dataZz,
Status := status);
flagl := false;
elsif flag2 then
GetFirstQueue(Queue := Queue,
QueueElement := dataZz,
Status := status);
flag2 := false;
end_if;

Example 2

The following parameters are needed:

Name Data Type Description

Size dint Max no. of elements in queue
InData AnyType In element, of same type as OutData
OutData AnyType Out element, of same type as InData
Put bool Put InData in queue on up edge

Get bool Get OutData from queue on up edge
Clear bool Clear contents of queue

Error bool Out: type or size of error

508

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples Queues

The following variables are needed:

Name Data Type Description
Queue QueueObject Queue object
PutState bool state

GetState bool state

Status dint

Code block 1 called Start_name

(*CreateQueue*)
CreateQueue (Queue, Size, InData, status) ;
Error := status < 0;

Code block 2 (queue statement)

PutState := Put;

GetState := Get;

if PutState:NEW and not PutState:0LD then
PutLastQueue (Queue, InData, status) ;
Error := status < 0;

end_if;

if GetState:NEW and not GetState:0LD then
GetFirstQueue (Queue,OutData, status) ;
Error := status < 0;

end_if;

if Clear then
ClearQueue (Queue, status) ;
Error := false;

end_if;

3BSE035980-600 A 509

Conversion Functions Appendix A Array, Queue and Conversion Examples

Conversion Functions

DIntToBCD

The DIntToBCD function converts an integer to a BCD value. An error status is
returned if overflow occurs and no BCD value is produced.

Example

The following variables are needed:

Name Data Type
N dint
BCD dint
Status dint

Convert an integer into a BCD value:
N=12345Nis0001234)5)

N can be divided into eight four-bit nibbles, where each nibble represents one BCD
digit. The least significant nibble is 5, the next 4, etc. These nibbles can be written in
binary form as below:

All four- 0000 0000 0000 0001 0010 0011 0100 0101
bit
nibbles

which is 00 000 000 000 OO0 010 010 001 101 000 101
equiv. to

BCD as 0 0 0 0 0 0 7 4 5 6 5
decimal
value

DIntToBCD (N, BCD, Status)

BCD now contains the value 74565.

510 3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples

BCDToDiInt

BCDToDint

BCDToDInt converts a BCD value to an integer. An error status is returned if the

BCD value is illegal (no integer value in these cases).

Example

The following variables are needed:

Name Data Type

N dint

BCD dint

Status dint

Convert the BCD value into an integer:

BCD = 74565

BCD as 0 0 0 0 0 0 5 6 5
decimal

value

BCD as 00 000 000 000 000 010 101 000 101
32-bit

pattern

BCD as 0000 0000 0000 0001 0010 0011 0100 0101
four-bit

nibbles

Each nibble represents one BCD digit. The least significant nibble is 5, the next 4,
etc. These nibbles can be written in decimal formas: 0001234 5.

BCDToDInt (

BCD, N, Status

N now contains the value 12345.

)

3BSE035980-600 A

511

ASCII

Appendix A Array, Queue and Conversion Examples

ASCII

Bit31

ASCII character codes

ASCII (American Standards Committee for Information Interchange) originally
defined a set of codes for 128 characters and commands. Manufacturers later
extended the ASCII codes to provide another 128 characters.

ASCII is a method of coding characters and command sequences, which is
extensively used by manufacturers of peripheral equipment. Many devices transmit
information in ASCII code (for example bar-code readers, keyboards) and many
devices accept information in this form (for example VDUs and printers).

ASCII-coded strings allow for the transmission of non-printable characters and
control characters. ASCII character sequences can be used to change the mode of a
VDU display, or the character set of a printer.

Control Builder provides three procedures and one function manipulating ASCII
strings (ISO Latin-1 only). These are useful when a device requires ASCII-coded
information, and can be used to send ASCII-coded strings to printers, terminals etc.

Any ASCII character code may be used, thus it is possible to send control characters
and sequences to switch printers and VDUs into various display modes. (Bold,
Double Space, Reverse video etc.).

Before describing the procedures and functions available for ASCII strings, it is
useful to examine the way in which an integer is stored in the system memory.

Bit0
|

Byte 3 Byte 2 Byte 1 Byte 0

Figure 213. Integers are stored as four bytes in memory.

Integers are represented by a four-byte (32-bit) storage area. In normal usage, the
bits are used to store both the value and the sign of the integer. This 4-byte storage
space may also be used to store a series of values which represent an ASCII string.

Each ASCII character requires 1 byte of storage space. Therefore, it is possible to
store up to 4 ASCII characters in a single memory area reserved for an integer.

512

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples ASCII

The procedures below allow 1, 2 or 4 characters to be stored per integer.

Each ASCII character is coded with an integer value (in binary) between 0 and 255
(decimal). ASCII codes are normally represented as either their decimal equivalent,
or as a hexadecimal number. If the character is represented as a hexadecimal
number, then 2 digits are required for each character.

The hexadecimal digits, their decimal, and binary bit pattern equivalents are given in
the table below:

Table 54. ASCII code representatives

Hexadecimal digit Decimal digit Binary bit pattern
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

The letter capital “A” is represented by the ASCII code 65 or 41ygx. Thus the
letter “A” is stored as a byte having the bit pattern 0100 0001.

3BSE035980-600 A 513

ASCII Conversion Appendix A Array, Queue and Conversion Examples

ASCII Conversion

StringToASCIIStruct (String1, NoOfCharsPerDint, DintStruct, Status)

This procedure converts a string to an ASCIIStruct. An ASCIIStruct consists of any
number of integer components (see below).

The value of the parameter NoOfCharsPerDint determines how many ASCII
characters are stored within each ASCII record component. This value can be 1, 2, 4
or —1, -2, —4 only. A negative value means that the sequence of bytes is reversed.

NoOfCharsPerDint determines how many character codes are packed into the four
bytes available for the integer. If one character is stored per integer, then only the
first eight least significant bits of each integer are used for storage, if positive, or the
last eight, if negative.

DintStruct must be defined as follows: the type definition and its components can be
given any name, but the components must all be of integer data type. The number of
components (of integer type) should be decided based on the length of the string to
be converted, and also the number of characters which are to be stored in each
integer. The converted string may need to be transmitted to a peripheral device, so
the characteristics of this device should also be taken into account.

The maximum length for any string is 140 characters, and if this maximum is to be
stored in the minimum number of integer components, then this will require 35
integer components in the integer record (at four ASCII characters per integer). If
you anticipate the need to store this number of characters, then an integer record of
35 integer components should be defined.

Status returns an indication of the result of the operation.

514 3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples ASCII Conversion

Storage with Different Character Packing Factors

When NoOfCharsPerDint is set to 1, each integer variable holds the value for one
ASCII character. Thus the character capital “A” is stored as decimal 65 in the
integer, as a bit pattern of 0100 (Nibblel) and 0001 (Nibble0).

Nibble1 NibbleO

Bit31
LTI T PP JE P T PP IR T T T T [Jlo[1]o]olofofo]4]
MSB A LSB
Byte 3 Byte 2 Byte O
Figure 214. The ASCII code for “A” stored in an integer (packing = I character per
integer)
When NoOfCharsPerDint is set to 2, each integer variable stores the value for two
ASCII characters. The characters “AB” are stored as decimals 65 and 66 in the
integer. The value 65 for “A” is stored in the first byte of the integer, and that for “B”
in the second byte.
Bit31 Nibble3 Nibble2 Nibble1 NibbleO
CITTTTTTICTTTTTT T Jfof1]oToloTol1To][ol1]o o oTolo 1]
B MSB A LSB
Byte 3 Byte 2 Byte 1 Byte 0

Figure 215. The ASCII codes for “AB” stored in an integer (packing = 2 characters
per integer)

When NoOfCharsPerDint is set to 4, each integer variable contains the value for
four ASCII characters. The characters “ABCD” are stored as decimals 65, 66, 67
and 68 in the integer. The value 65 for “A” is stored in the first byte of the integer,
“B” in the second byte, “C” in the third byte, and “D” in the fourth byte.

Nibble7 Nibble6 Nibble5 Nibble4 Nibble3 Nibble2 Nibble1 NibbleO
Bit31 [o[1]oJoJo[1]oJo][o]tJoJoJoJo[1[1][o]1]o]o[o]o]1]0][o][1]o]oJo]o]0]1]
D c B MSB A LSB

Byte 3 Byte 2 Byte 1 Byte 0

Figure 216. The ASCII codes for “ABCD” stored in an integer (packing = 4
characters per integer)

3BSE035980-600 A 515

ASCII Conversion Appendix A Array, Queue and Conversion Examples

Definition of DintStruct type

The appropriate length of an integer struct to store ASCII code is defined by the
number of components required as follows.

Suppose we want to be able to store the maximum string length at a packing factor
of 4 characters per integer. A data type called, for instance, ASCIIMaxStringType,
should be defined consisting of 35 components which must be of integer data type
called, for example Charsl_4, Chars5_8 etc.

Usage

A string interaction is used to input the value of a string, (to a string variable called
Stringl), which is to be converted to ASCII code. The code is stored in an integer
struct called IntStruct which has 4 components (Compl to Comp4).

The procedure call:
StringToASCIIStruct (Stringl, 1, IntStruct, Statusl)
will write to the integer record components.

If the input string is “ABCD?”, then the components will have the values 65, 66, 67
and 68, respectively. The literal value of 1 for the NoOfCharsPerDint determines
that there is to be one character code in each component.

If NoOfCharsPerDint had been set to 2, then the first integer component would have
the value 16961 (which is the decimal equivalent of 65 in the first byte and 66 in the
second), and the second component would have the value 17475, which is the
decimal equivalent of 67 in the first byte and 68 in the second. The other two bytes
in each integer component are set to 0000.

Unused components

NoOfCharsPerDint determines how many bits are allocated for storage (8 bits — 1
byte per character) for a component. For example, if NoOfCharsPerDint is set to 2,
then only the first two bytes are used in each component for data storage. The
remaining bytes are set to 0 (zero).

516

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples ASCII Conversion

This is illustrated below:

Bit31
[ofoJofoJofoJofo][0]oJo[oo[o]o[o][of1]olololol1]ol[o]1]0o]ofo]o 0 1]
Null Null B A
Componenti
Byte 3 Byte 2 Byte 1 Byte 0
Bit31
[ooJofoJo[oJo[o][0o]o]o[o]ofo]o[0][ol1]ololol1]olol[o]1]0o]ofo]0 1]
Component2 Null Null D C
Byte 3 Byte 2 Byte 1 Byte 0
Bit31
olololololololol[ololofolofofo o][0[O 1] 0[0] O[O] O][O[O[1] O[0[0[O] O]
Component3 Null Null Space Space
Byte 3 Byte 2 Byte 1 Byte 0
Bit31
[ofoJofoofo]o[o][0]o]o[o[0[0]0[0][ofo[1[o[o[o[o[0][0]0]1]0fo o]0 0]
Component4 Null Null Space Space
Byte 3 Byte 2 Byte 1 Byte 0

Figure 217. The diagram shows four integer components of an integer record.
NoOfCharsPerDint has been set to 2, so that each component stores two ASCII
characters. The character string “ABCD” has been transferred to the struct.

3BSE035980-600 A 517

ASCII Conversion Appendix A Array, Queue and Conversion Examples

Note the following

If there are two characters per integer, the allocated storage areas Byte 0 and Byte 1
contain either the code for the string character, or if there is no character available,
the code for a space (20gx). Unused bit positions (Bytes 2 and 3 in this case)
contain zero.

Note:

* Characters from the string to be transferred are read from the current pointer
position in the source string.

* Space characters are inserted into the allocated storage areas within each
component. They are also inserted into all records to which no characters have
been transferred, for example, if the actual string requires less than the number
of components available for storage.

* Anerror status is returned to the value of Status, if the string to be transferred is
longer than the storage space allocated. In this case, no transfer of any part of
the string occurs.

ASCIIStructToString(DIntStruct, NoOfCharacters, NoOfCharsPerDint, String1,
Status)

This procedure is the reverse of StringToASCIIStruct described above. It takes an
integer struct, which contains the codes for an ASCII string, and recreates the string
from the values in the components of the record. (See StringToASCIIStruct for full
details of the structure of the integer struct and the encoding method.)

The component values of the integer struct, DIntStruct are read and translated to the
value of the destination string, Stringl.

The value of the parameter NoOfCharacters determines how many ASCII
characters are read from the source record, DIntStruct, and the value of the
parameter NoOfCharsPerDInt informs the procedure how many characters are to be
expected in each integer component. Status returns an indication of the result of the
operation.

The DIntStruct parameter must be structured as an integer struct, that is, it must
have integer components only. (See details in StringToASCIIStruct.)

518

3BSE035980-600 A

Appendix A Array, Queue and Conversion Examples ASCII Conversion

NoOfCharacters and NoOfCharsPerDInt may be variables, module parameters or
literals.

Usage

Suppose the integer struct DIntStruct from the previous example is to be converted

back to a string. The destination string is called String/ and the three characters are
to be copied. It is known that the original storage protocol defined 2 characters per

integer component.

The following code will perform the task:
ASCIIStructToString (DIntStruct,3,2,Stringl, Status2)

After execution the value of Stringl value will be “ABC”.

Note

* The number of characters per integer of the original record must be known,
only values of 1, 2, 4 or —1, -2, —4 are allowed.

* The new output string will be inserted at the current pointer position in the
destination string.

* Anerror status is reported as a value to Status if the generated string results in a
new string which is longer than the permitted length for the destination string.

3BSE035980-600 A 519

ASCII Conversion Appendix A Array, Queue and Conversion Examples

520 3BSE035980-600 A

Appendix B System Alarms and Events

This section is divided in sub-sections for system alarms and system simple events
and it describes system alarms and system simple events from a controller
perspective. Additional information can also be found in the Control Builder online
help.

General

OPC Server

The OPC Server objects in Control Structure are created automatically when a
Control Builder project is opened. These OPC Server objects have an associated
Aspect Object as source object for the alarm/event in Plant Explorer, for the System
Alarm&Events generated by the OPC Server.

System alarms and system simple events generated within OPC server can be
divided in two general groups regarding to originating part of the OPC server
(source).

. Software

* Subscriptions

Controller

System alarms and system simple events generated within controller can be divided
in two general groups regarding to originating part of the controller (source).

* Software generated system alarms and system simple events.

* Hardware generated system alarms and system simple events.

3BSE035980-600 A 521

OPC Server — Software Appendix B System Alarms and Events

OPC Server — Software

All system alarms and system simple events triggered by base code executing in
OPC Server belong to this group. This group is further divided into appropriate parts
uniquely identified by source name suffix.

* _SWFirmware — for common base code

* _SWDataAccess — for OPC Data Access specific code

* _SWAlarmEvent — for OPC Alarm and Event specific code
The SrcName shall be automatically formed as:

SrcName = SystemIP address- SrcNameSuffix

Example: SrcName = 172.16.85.90:200-_SWFirmware

SrcNameSuffix = _SWFirmware
System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

SrcNameSuffix = _SWDataAccess
System Simple Event SaveColdRetainFailed

Generated when OPC Data Access server can not save cold retain files for an
application.

SrcNameSuffix = _SWFirmware;

Message = "(5000) Save Cold Retain failed for {1}";
{1} = The name of the application.

SeverityLevel = Medium;

522 3BSE035980-600 A

Appendix B System Alarms and Events OPC Server — Software

SrcNameSuffix = _SWAIlarmEvent
System Simple Event AlarmNotUnique

Generated when OPCAE server discover that there are two alarms with same
combination SouceName ConditionName defined in two different controllers.

SrcNameSuffix = _SWAIlarmEvent ;

Message = "(6000) Alarm not unique {1}, {2}";
{1} = Source name of the alarm

{2} = Condition name of the alarm
SeverityLevel = Medium;

System Simple Event AlarmHandler overflow

Generated when an item in the EventHandler must be deleted because of overflow.
If there is space again in the EventHandler, the system initializes an AlarmSummary
and updates the missing information. The size of the EventHandler is limited by the
system variable MaxNoOfAlarms.

SrcNameSuffix = _SWAIlarmEvent ;
Message = "(6001) AlarmHandler overflow. MaxNoOfAlarms exceeded";
SeverityLevel = Medium;

System Simple Event FailedToSubscribe

Generated when a try from OPC AE server to subscribe to a certain control system
was not successful. The corresponding control system name shall be concatenated to
this message.

SrcNameSuffix = _SWAIlarmEvent;

Message = "(6002) Failed to subscribe on {1}";
{1} = The IP address of the control system.
SeverityLevel = Medium;

3BSE035980-600 A 523

OPC Server — Subscription Appendix B System Alarms and Events

System Simple Event Overflow in queue to OPC client

Generated after an overflow of the event queue to an OPC client queue and when the
queue is filled less than 75% of the actual size. The system event is generated and
sent to the client to announce the overflow. On overflow the latest event is thrown
away. The size of every event queue to an OPC client queue is limited by the system
setting "Queue size".

SrcNameSuffix = _SWAlarmEvent;
Message = "(6003) Overflow in queue to OPC client";
SeverityLevel = Medium;

OPC Server — Subscription

OPC server can subscribe a number of controllers from both Data Access and Alarm
and Event part. Thus, each subscribed controller may have one or two system alarms
for its disposal, depending on number of subscription to controller from OPC server.
These system alarms must be created in a moment of corresponding connection i.e.
subscription establishing.

The SrcNameSuffix for Data Access subscriptions group is:
SrcNameSuffix = SubDataAccess
Example: SourceName = 172.16.85.90:22-SubDataAccess
The SrcNameSuffix for Alarm and Event subscriptions group is:
SrcNameSuffix = SubAlarmEvent
Example: SourceName = 172.16.85.90:22-SubAlarmEvent

The ConditionName for these system alarms is supposed to provide a unique
combination of SrcName and ConditionName (since SrcName is the same for whole
category). Thus, ConditionName has form that contains controller IP address.

Example: ConditionName = 172.16.85.90:2-ConnectionError

The following category of system alarms and system simple events handle errors
and warnings concerning connection towards subscribed controllers.

524

3BSE035980-600 A

Appendix B System Alarms and Events OPC Server — Subscription

SrcNameSuffix = SubDataAccess

Each controller subscribed from Data Access should have one system alarm for its
disposal. Note that these system alarms shall be:

* defined when a new subscription (connection) is established
* activated when an error occurs on this connection

* inactivated when all errors are corrected or disappeared

e deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".

Example: Condition name = 10.46.37.121:2-ConnectionError.

System Alarm ConnectionError to DA subscription

SrcNameSuffix = SubDataAccess;

Condition name = -ConnectionError;

Message = "(5500) Connection error to DA subscribed controller";
Severity Level = Critical;

SrcNameSuffix = SubAlarmEvent

Each controller subscribed from Alarm and Event should have one system alarm for
its disposal. Note that these system alarms shall be:

* defined when a new subscription (connection) is established
* activated when an error occurs on this connection

* inactivated when all errors are corrected or disappeared

* deleted when subscription is removed

Condition name has form that includes subscribed controller IP address. It is created
dynamically but last part is always the same: "-ConnectionError".
Example: Condition name = "10.46.37.121:2-ConnectionError".

3BSE035980-600 A 525

Controller — Software Appendix B System Alarms and Events

System Alarm ConnectionError to AE subscription

SrcNameSuffix = SubAlarmEvent;

Condition name = -ConnectionError;

Message = "(6500) Connection error to AE subscribed controller”;
Severity Level = Critical,

Controller — Software

All system alarms and system simple events triggered by base code belongs to this
group.

This is important to note that system alarms and system simple events issued by
protocol specific code may belong to this group. Normally system alarms and
system simple events issued by protocol specific code are handled within 'Hardware
group'. Under certain circumstances when it is necessary to define errors or
warnings that are not cowered by HW state error handling, this group i.e.
corresponding dedicated SrcNameSuffix should be used. The following set of
source name suffixes are defined for this group.

* _SWFirmware - for base code
e _SWI1131Task - for 1131 task execution specific code
* _SWTargets - for HW and OS abstraction layer of the base code

e SWinsum-, _SWS100-, _SWMB300-, _SWProfibus-, _SWModbus- Ifor
protocol specific code

SrcNameSuffix = _SWFirmware
System Alarm HeapFull

SrcNameSuffix = _SWFirmware;
Condition name = HeapFull;
Message = "(1000) The Heap is full";
SeverityLevel = High;

1. System alarms and system simple events generated by respective communication protocol are described in the
online help function for respective protocol.

526

3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

System Alarm ErrorHandler sum alarm

SrcNameSuffix = _SWFirmware

Condition name = ErrorHandler;

Message = "(1001) ErrorHandler sum alarm created";
SeverityLevel = Medium;

System Alarm Data transfer failed during FW-upgrade of Alarm&Event

This alarm is generated when Alarm&Event failed in the transfer of
Alarmé&Event data from Primary CPU to Trainee CPU. It shows how many
items of different Alarm&Event data that failed. The consequence after
upgrade could be that inactive alarms disappear but active alarms will be
activated again.

SrcNameSuffix = _SWFirmware;

Condition name = HeapFull;

Message = "(1002) Alarm&Event failed in FW-upgrade. No of Static alarms =
{1}. No of Simple events = {2}. No of Dynamic alarms = {3}. No of SOE-
events = {4}";

{1} = Number of failed items.

{2} = Number of failed items.

{3} = Number of failed items.

{4} = Number of failed items.

SeverityLevel = High;

System Simple Event EventNotificationLost

An event notification was lost. This can happen when the particular OPC-
Server or printer queue containing event notification is full. A system simple
event is generated when there is space again in this queue. After this the
missing information about alarms in the subscribing systems-OPC Servers is
updated, but this does not mean that all missed events are regenerated.

SrcNameSuffix = _SWFirmware;

Message = "(1010) Lost event notification(s) to {1}";

{1} = The remote systems (the OPC Servers) IP address when generated
event indicates full OPC-Server queue or with string "local printer” when
there is a lost event notification from a filled buffer in printer queue.
Severity Level = Medium,;

3BSE035980-600 A

527

Controller — Software Appendix B System Alarms and Events

System Simple Event Alarm definition failed

An attempt to define a process alarm in controller, or a system alarm in
controller or in OPC server was not successfully completed.

SrcNameSuffix = _SWFirmware;

Message = "(1011) Alarm definition failed for {1}, {2}";
{1} = Source name

{2} = Condition name

Severity Level = Low;

System Simple Event Undeclared External event

A low level event issued by external device is received, but no declaration was
found in applications.

SrcNameSuffix = _SWFirmware;

Message = "(1012) Undeclared external event; {1}";

{1} = Signal ID and new value delivered by low level event.
Severity Level = Medium;

System Simple Event No enable/disable of alarms in SIL applications

An attempt enable/disable an alarm (via MMS) in a SIL application which is
not permitted.

SrcNameSuffix = _SWFirmware;
Message = "(1013) No enable/disable of alarms in SIL applications ({1},

{2h"

This message is concatenated with source name and condition name of the
alarm.

Severity Level = Medium;

System Simple Event Event notification(s) lost during firmware upgrade
Generated if events are lost during firmware upgrade

SrcNameSuffix = _SWFirmware;
Message = "(1014) Event notification(s) lost during firmware upgrade"
SeverityLevel = Medium

528 3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

System Simple Event Alarm definition(s) failed during firmware upgrade
Generated if there are attempting to create alarms during firmware upgrade.

SrcNameSuffix = _SWFirmware;
Message = "(1015) Alarm definition(s) failed during firmware upgrade"
SeverityLevel = Medium

System Simple Event CommandedSwitchover

The system event below is issued when a commanded switchover has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1020) CPU Switchover was commanded";
SeverityLevel = Medium;

System Simple Event CommandedSwitchoverFailed

The system event below is issued when a commanded switchover has been
unsuccessfully executed.

SrcNameSuffix = _SWFirmware;
Message = "(1021) CPU Switchover command failed";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU was commanded

The system event below is issued when a commanded reset of backup CPU has
successfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1022) Reset of backup CPU was commanded";
SeverityLevel = Medium;

System Simple Event Reset of backup CPU command failed

The system event below is issued when a commanded reset of backup CPU has
unsuccessfully been executed.

SrcNameSuffix = _SWFirmware;
Message = "(1023) Reset of backup CPU command failed";
SeverityLevel = Medium;

3BSE035980-600 A 529

Controller — Software Appendix B System Alarms and Events

System Simple Event Error found in DataToSimpleEvent

The system event below is generated during calls to DataToSimpleEvent
function block.

SrcNameSuffix = _SWFirmware;

Message = "(1030) AE setting Nam Valltem/LogStrings to low";
Message = "(1031) Error in FB parameters";

Message = "(1032) Data overflow in communication buffer";
SeverityLevel = Medium;

System Simple Event Reset of controller forces performed

System event generated from Access Management. Message when Override
Control has made a reset of controller forces.

SrcNameSuffix = _SWFirmware;
Message = "(1033) Reset of controller forces performed";
SeverityLevel = Medium;

System Simple Event Ack of event denied

System event generated from Access Management, when acknowledgement of
an alarm is denied.

SrcNameSuffix = _SWFirmware;

Message = "(1034) Acknowledge of event denied ({1}, {2})";
{1} = source name of the alarm

{2} = condition name of the alarm

SeverityLevel = Medium;

System Simple Event No configuration image found at compact flash card

The system event below is issued when a compact flash card, without a
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;

Message = ">(1040) No configuration image found at compact flash
card";

SeverityLevel = Medium;

530 3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

System Simple Event Configuration image found at compact flash card is

corrupt

The system event below is issued when a compact flash card, with a corrupt
configuration image, is detected during startup of controller

SrcNameSuffix = _SWFirmware;

Message = "(1041) Configuration image found at compact flash is
corrupt";

SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash does not
match controller

SrcNameSuffix = _SWFirmware;

Message = "(1042) Configuration image found at compact flash does not
match controller”

SeverityLevel = Medium

System Simple Event is started from compact flash

SrcNameSuffix = _SWFirmware;
Message = "(1043) is started from compact flash"
SeverityLevel = Medium

System Simple Event Configuration image found at compact flash has different

format

SrcNameSuffix = _SWFirmware;

Message = "(1044) Configuration image found at compact flash has
different format"

SeverityLevel = Medium

3BSE035980-600 A

531

Controller — Software Appendix B System Alarms and Events

System Simple Event Configuration image found at compact flash does not
match controller

The system event below is issued when a compact flash card, with a
configuration image created for another type of CPU, is detected during startup
of controller.

SrcNameSuffix = _SWFirmware;

Message = "(1042) Configuration image found at compact flash does not
match controller”

SeverityLevel = Medium;

System Simple Event is started from compact flash

The system event below is issued when a compact flash card, with a valid
configuration image, is detected during startup of controller.

SrcNameSuffix = _SWFirmware;
Message = "(1043) is started from compact flash"
SeverityLevel = Medium;

System Simple Event Configuration image found at compact flash has not equal
format

The system event below is issued when a compact flash card, with a
configuration image created in a format not supported, is detected during
startup of controller.

SrcNameSuffix = _SWFirmware;

Message = "(1044) Configuration image found at compact flash has
different format"

SeverityLevel = Medium;

System Simple Event

SrcNameSuffix = _SWFirmware;

Message = “(1045) Write attempt to constant variable {1} of instance
{2}

Severity Level = High;

532 3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

System Simple Event

SrcNameSuffix = _SWFirmware;

Message = “(1046) System variable LogConstAbuse set to 0 since limit on
{1} messages reached";

Severity Level = High;

This message can occur on process alarms when the alarms have not executed yet.
For example, after an OLU. It should only occur temporarily and will disappear
when the execution has started and the alarm have changed state or when OPC/AE
clients (example PPA) are refreshed.

Message = “(1047) The message text is temporarily unavailable since the
alarm is issued before 1131 has been run.";
Severity Level = Medium;

3BSE035980-600 A 533

Controller — Software

Appendix B System Alarms and Events

SrcNameSuffix = _SW1131Task
System Alarm TaskAbort

SrcNameSuffix = _SW1131Task;

Condition name = TaskAbort;

Message = "(2000) Execution time too long in Task {1}";

{1} = Task name will be added to message, for example, "Execution time
too long in Task Fast"

Severity Level = Fatal;

System Simple Event Interval time in ordinary tasks inc

SrcNameSuffix = _SW1131Task;

Message = "(2001) Interval time in ordinary tasks increased {1}%";

{1} = The increase of the interval time in percent with the precision of one
decimal.

Severity Level = Medium;

System Simple Event Interval time in ordinary tasks dec

SrcNameSuffix = _SW1131Task;

Message = "(2002) Interval time in ordinary tasks decreased {1}%";
{1} = The decrease of the interval time in percent with the precision of
one decimal.

Severity Level = Medium;

System Simple Event Interval Time was changed

Only used for tasks executing at Time-Critical priority.

SrcNameSuffix = _SW1131Task;

Message = "(2003) Interval time changed to {1} ms. Task={2}";
{1} = New interval time ,

{2} = Name of the task.

Severity Level = Medium;

534

3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

System Alarm Latency high in normal tasks
The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;

Message On = "(2004) Latency high in task {1}, {2} ms"
{1} = Name of the task,

{2} = Actual latency.

Message Off = "(2004) Latency high inactive "
Condition name = High Latency

SeverityLevel = Medium

System Alarm Latency high in time critical task
The alarm is activated when actual latency is 70 % of max latency.

SrcNameSuffix = _SW1131Task;

Message On = "(2005) Latency high in task {1}, {2} ms"
Message Off = "(2005) Latency high inactive "

{1} = Name of the task,

{2} = Actual latency.

Condition name = High Latency
SeverityLevel = Medium

SrcNameSuffix = _SWTargets
System Simple Event RCU error detected in the Primary CPU

SrcNameSuffix = _SWTargets;

Message = "(4000) Primary CPU: RCUError(0x{2})";

{2} = Content of the RCU Error Register in hexadecimal format.
Severity Level = High;

This event is issued from the RCU Driver if redundancy has been shut down due to
an internal error in the RCU Driver found at the end of synchronization.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4025) Failed to set RCU Diriver state to

3BSE035980-600 A 535

Controller — Software Appendix B System Alarms and Events

eRCUTakeoverPossible";
Severity Level = High;

This event is issued from the RCU Driver if redundancy has been shut down due to
an internal error in the RCU Driver found at the start of synchronization.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4026) Failed to set RCU Driver state to eRCUNormal";
Severity Level = High;

This event is issued from the RCU Driver if Online Upgrade has been suspended
due to an internal error in the RCU Driver.

System Simple Event

SrcNameSuffix = _SWTargets;
Message = “(4027) Failed to set RCU Driver state to eRCUOLU",;
Severity Level = High;

System Simple Event RCU test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4001) Primary CPU: RCUTestError({2}, 0x{3})";

{2} = Test Number

1 = RCU Register test

2 = Log Parity test

3 =Log test

4 = Log Range test

5 =10 Emulation test

6 = CPU Bus Timeout test

{3} = The Error status is printed in hexadecimal format.
Severity Level = High;
System Simple Event Dual test error detected in the Primary CPU

SrcNameSuffix = _SWTargets;
Message = "(4002) Primary CPU: DualTestError({2}, 0x{3})";
{2} = The Dual Test status (see Table 55)

536 3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

{3} = The Error status is printed in hexadecimal format.
Severity Level = High;

Table 55. Dual Test status.

Message Description

CPUCEXBusMsgSendError Failed to send test message to the Backup CPU
CPUCEXBusMessageError Failed to receive test message from the Backup CPU
CheckpointTestError Failed to upgrade memory of the Backup CPU

3BSE035980-600 A

537

Controller — Software Appendix B System Alarms and Events

System Simple Event Backup CPU CEX-Bus test error detected in the Primary

CPU
SrcNameSuffix = _SWTargets;
Message = "(4003) Primary CPU: BkpCEXBusTestError({2}, 0x{3})";
{2} = The Test status (see Table 56)
{3} = The Error status is printed in hexadecimal format.
Severity Level = High;
Table 56. Test status from Backup CPU
Message Description
CPUCEXBusMsgSendError Failed to send test message to the Backup
CPU
CPUCEXBusMessageError Failed to receive response message from the
Backup CPU
CEXBusTestError Failed to test the CEX-Bus interface in the
Backup CPU

System Simple Event Error detected in the Primary CPU

SrcNameSuffix = _SWTargets;

Message = "(4004) Primary CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 57)
{3} = The state when the error was detected.
Severity Level = High;

Table 57. The name of the detected error.

Message Description
SDCError RCU Service data channel error
RCUConnectorOpen The RCU Link cable is not connected to the own CPU

RCUOtherConnectorOpen The RCU Link cable is not connected to the peer CPU
RCUDrvErro Failed when calling the RCU driver

538 3BSE035980-600 A

Appendix B System Alarms and Events

Controller — Software

Table 57. The name of the detected error.

Message

Description

InitCommEtrror

InformCommParamError

GetCommParamError

BkpCPUNotAlive
BkpCPUCEXBusError
BkpCPUlIllegalExternalState

Timeout

CloningStartError
CloningNotCompletedError
CloningError

BkpFirmwareError

Failed to initialize interrupt handling with the peer CPU

Failed to inform other CPU about communication
parameters

Failed to get communication parameters from other
CPU

The Backup CPU is not alive
Backup CPU not connected to the CEX-bus
Backup CPU has an illegal External state

Backup CPU has not sent a response message within
a specified timeout time

Failed to start cloning in state Upgrading
Cloning not completed in state Unconfirmed
Cloning failed in state Synchronized

Backup CPU’s firmware id not equal to Primary CPU’s
firmware id

System Simple Event A Backup CPU is recognized and started

SrcNameSuffix = _SWTargets;
Message = "(4005) Primary CPU: Backup CPU started";
Severity Level = Medium,;

System Simple Event The system has reached the Synchronized state

The Backup CPU is ready to take-over if the Primary CPU fails

SrcNameSuffix = _SWTargets;
Message = "(4006) Primary CPU: Synchronized state";
Severity Level = Medium;

3BSE035980-600 A

539

Controller — Software Appendix B System Alarms and Events

System Simple Event Switchover has occurred

SrcNameSuffix = _SWTargets;

Message = "(4007) Switchover to {2} has occurred";
{2} = "Lower CPU" or "Upper CPU"

Severity Level = Medium;

System Simple Event Report of Backup CPU error after a switchover

SrcNameSuffix = _SWTargets;

Message = "(4008) Primary CPU: {2} in {3}";
{2} = The error reported from the backup CPU
{3} = The position reported from the backup CPU
Severity Level = Medium;

System Simple Event The Backup CPU has stopped

SrcNameSuffix = _SWTargets;

Message = "(4009) Primary CPU: Backup CPU stopped ({2})";
{2} = Stop reason (seeTable 58)

Severity Level = High;

Table 58. Stop reason.

Message Description
BkpCPUCEXBusError Backup CPU not connected to the CEX bus
BkpHaltRequest A Backup CPU problem has been detected in the Primary

CPU. The Backup CPU however seems fully alive

BkpCPUNotAlive The Backup CPU has stopped or been removed without
reporting its status to the Primary CPU

Status sent from backup CPU Backup CPU status received via the CEX bus

System Simple Event The Primary CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4010) Primary CPU: CPU halted";
Severity Level = High;

540 3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

System Simple Event RCU error detected in the Backup CPU

SrcNameSuffix = _SWTargets;

Message = "(4020) Backup CPU: RCUError(0x{2})";

{2} = The contents of the RCU Error Register in hexadecimal format.
Severity Level = High;

System Simple Event RCU test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;

Message = "(4021) Backup CPU: RCUTestError({2}, 0x{3})";
{2} = Test Number (see Table 59)

{3} = Error Status. in hexadecimal format.

Severity Level = High;

Table 59. Test Number

Test Number Error Status

1 RCU Register test
Log Parity test
Log test

Log Range test

I/0O Emulation test

o o A WD

CPU Bus Timeout test

System Simple Event Dual test error detected in the Backup CPU

SrcNameSuffix = _SWTargets;

Message = "(4022) Backup CPU: DualTestError({2}, 0x{3})";
{2} = Dual Test status (see Table 60)

{3} = Error Status. in hexadecimal format.

Severity Level = High;

3BSE035980-600 A 541

Controller — Software

Appendix B System Alarms and Events

Table 60. Dual Test status.

Message

Description

CPUCEXBusMsgSendError

CPUCEXBusMessageError

RCUDrvError

Failed to send test message to the Primary
CPU

Failed to receive test message from the
Primary CPU

Failed when calling the RCU driver to set
threshold value for the Log Data Buffer

System Simple Event Error detected in the Backup CPU

SrcNameSuffix = _SWTargets;

Message = "(4023) Backup CPU: {2} in state {3}";
{2} = The name of the detected error (see Table 61)
{3} = The state when the error was detected.

Severity Level = High;

Table 61. The name of the detected error.

Message Description
SDCError RCU Service data channel error
RCUConnectorOpen The RCU Link cable is not connected to the own

RCUOtherConnectorOpen

RCUDrvError

InitCommError

InformCommParamError

GetCommParamError

CPU

The RCU Link cable is not connected to the
peer CPU

Failed when calling the RCU driver

Failed to initialize interrupt handling with the
peer CPU

Failed to inform other CPU about
communication parameters

Failed to get communication parameters from
other CPU

542

3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

Table 61. The name of the detected error. (Continued)

Message Description

EqualityCheckFailed Memory upgrading of Backup CPU has failed

RCUMessageHaltReceived A Halt request has been received from the
Primary CPU

PrimCPUEXxitConnection Primary CPU has exit connection

System Simple Event The Backup CPU has halted

SrcNameSuffix = _SWTargets;
Message = "(4024) Backup CPU: CPU halted";
Severity Level = High;

System Simple Event Stopped due to ModuleBus inaccessible from Backup
CPU

This event is issued from the MBTestMC unit if the Backup CPU has been stopped
due redundancy supporting modules on the module bus turned out to be inaccessible
from the Backup CPU.

SrcNameSuffix = _SWTargets;

Message = "(4030) Stopped due to ModuleBus inaccessible from Backup
CPU";

Severity Level = "High";

This event is issued from the RCU Driver if the Backup CPU has been halted due to
an overload situation in the redundancy control HW.

System Simple Event

SrcNameSuffix = _SWTargets;

Message = “(4028) RCU LDB overflow has occured in Backup/trainee
PM";

Severity Level = High;

3BSE035980-600 A 543

Controller — Software Appendix B System Alarms and Events

This event is issued if the Backup CPU has been halted during start-up due to that it
uses the same MAC address as the Primary CPU. (This can happen if the original
Primary CPU unit has been removed from a redundant controller and the same unit
is later re-inserted as spare part in the same running controller.)

System Simple Event

SrcNameSuffix = _SWTargets;

Message = “(4042) Backup CPU has the same MAC Address as Primary
CPU";

Severity Level = High;

System Simple Event Switched over due to ModuleBus inaccessible from
Primary CPU

This event is issued from the MBTestMC unit if a switch-over occurred due to
redundancy supporting modules on the module bus turned out to be inaccessible
from the Primary CPU.

SrcNameSuffix = _SWTargets;

Message = "(4031) Switched over, ModuleBus inaccessible from Primary
CPU";

Severity Level = High;

Events from Network Interface Supervision
System Simple Event Backup CPU halted: Bad Network interface

This event is issued from the NIS primary task if the Backup CPU has been halted
due to both network interface in Backup CPU are not working properly.

SrcNameSuffix = _SWTargets;
Message = "(4040) Backup CPU halted: Bad Network interface";
Severity Level = High;

544

3BSE035980-600 A

Appendix B System Alarms and Events Controller — Software

Events from Checking of Available MAC address in Backup
System Simple Event No MAC address in Backup CPU
This event is issued to the primary PM if the backup PM has no MAC address.

SrcNameSuffix = _SWTargets;
Message = "(4041) No MAC address in backup PM";
Severity Level = High;

Events from Modulebus driver
System Simple Event Diverse pointer check

This event is issued from the check of pointers to the DPM which is used in all
accesses to read/write data to/from 10 modules.

SrcNameSuffix = _SWTargets;
Message = "(4050) Fatal Error in diverse pointer check";
Severity Level = Fatal;

System Simple Event Failed to send message to queue

SrcNameSuffix = _SWTargets;

Message = "(4051) Mbus msgQ failed: control of Primary/Backup Leds
not run";

Severity Level = Low;

System Simple Event Null pointer

SrcNameSuffix = _SWTargets;
Message = "(4052) Null pointer check failed";
Severity Level = Fatal;

System Simple Event Failed to create message queue

SrcNameSuffix = _SWTargets;
Message = "(4053) Failed to create message queue";
Severity Level = High;

System Simple Event Test of RAM Error in MBM1 failed

3BSE035980-600 A 545

Controller — Software Appendix B System Alarms and Events

SrcNameSuffix = _SWTargets;
Message = "(4054) Cyclic test of Ram Error in MBMI1 failed";
Severity Level = Critical;

System Simple Event Runtime RAM Error in MBM1

SrcNameSuffix = _SWTargets;
Message = "(4055) Runtime Ram Error in MBM1";
Severity Level = Critical;

System Simple Event Diagnostic test of CRC32 calculator in FPGA failed

SrcNameSuffix = _SWTargets;

Message = "(4056) Cyclic test of CRC32 calculator failed in {1}";
{1} = Cause of failure. Example: checkFailed, time